Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method
Applications of Mathematics (2014)
- Volume: 59, Issue: 4, page 361-370
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHuang, Pengzhan. "Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method." Applications of Mathematics 59.4 (2014): 361-370. <http://eudml.org/doc/261921>.
@article{Huang2014,
abstract = {This paper presents a superconvergence result based on projection method for stabilized finite element approximation of the Stokes eigenvalue problem. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares method. The paper complements the work of Li et al. (2012), which establishes the superconvergence result of the Stokes equations by the stabilized finite element method. Moreover, numerical tests confirm the theoretical analysis.},
author = {Huang, Pengzhan},
journal = {Applications of Mathematics},
keywords = {Stokes eigenvalue problem; stabilized method; lowest equal-order pair; projection method; superconvergence; Stokes eigenvalue problem; stabilized method; lowest equal-order pair; projection method; superconvergence; finite element; least squares method; numerical tests},
language = {eng},
number = {4},
pages = {361-370},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method},
url = {http://eudml.org/doc/261921},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Huang, Pengzhan
TI - Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 361
EP - 370
AB - This paper presents a superconvergence result based on projection method for stabilized finite element approximation of the Stokes eigenvalue problem. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares method. The paper complements the work of Li et al. (2012), which establishes the superconvergence result of the Stokes equations by the stabilized finite element method. Moreover, numerical tests confirm the theoretical analysis.
LA - eng
KW - Stokes eigenvalue problem; stabilized method; lowest equal-order pair; projection method; superconvergence; Stokes eigenvalue problem; stabilized method; lowest equal-order pair; projection method; superconvergence; finite element; least squares method; numerical tests
UR - http://eudml.org/doc/261921
ER -
References
top- Bochev, P., Dohrmann, C. R., Gunzburger, M. D., 10.1137/S0036142905444482, SIAM J. Numer. Anal. 44 (2006), 82-101 (electronic). (2006) Zbl1145.76015MR2217373DOI10.1137/S0036142905444482
- Chen, H., Jia, S., Xie, H., 10.1007/s10492-009-0015-7, Appl. Math., Praha 54 (2009), 237-250. (2009) Zbl1212.65431MR2530541DOI10.1007/s10492-009-0015-7
- Chen, W., Lin, Q., 10.1007/s10492-006-0006-x, Appl. Math., Praha 51 (2006), 73-88. (2006) Zbl1164.65489MR2197324DOI10.1007/s10492-006-0006-x
- Chen, H., Wang, J., 10.1137/S0036142902410039, SIAM J. Numer. Anal. 41 (2003), 1318-1338 (electronic). (2003) Zbl1058.65118MR2034883DOI10.1137/S0036142902410039
- Chou, S. H., Ye, X., 10.1016/j.cma.2006.10.025, Comput. Methods Appl. Mech. Eng. 196 (2007), 3706-3712. (2007) Zbl1173.65354MR2339996DOI10.1016/j.cma.2006.10.025
- Cui, M., Ye, X., 10.1002/num.20399, Numer. Methods Partial Differ. Equations 25 (2009), 1212-1230. (2009) Zbl1170.76037MR2541808DOI10.1002/num.20399
- Hecht, F., Pironneau, O., Hyaric, A. Le, Ohtsuka, K., FREEFEM++, version 2.3-3, 2008. Software avaible at http://www.freefem.org, .
- Heimsund, B. O., Tai, X. C., Wang, J. P., 10.1137/S003614290037410X, SIAM J. Numer. Anal. 40 (2002), 1263-1280. (2002) Zbl1047.65095MR1951894DOI10.1137/S003614290037410X
- Huang, P. Z., He, Y. N., Feng, X. L., Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem, Math. Probl. Eng. 2011 (2011), Article ID 745908, pp. 14. (2011) Zbl1235.74286MR2826898
- Huang, P. Z., He, Y. N., Feng, X. L., 10.1007/s10483-012-1575-7, Appl. Math. Mech., Engl. Ed. 33 (2012), 621-630. (2012) Zbl1266.65192MR2978223DOI10.1007/s10483-012-1575-7
- Huang, P. Z., Zhang, T., Ma, X. L., 10.1016/j.camwa.2011.10.012, Comput. Math. Appl. 62 (2011), 4249-4257. (2011) Zbl1236.76017MR2859980DOI10.1016/j.camwa.2011.10.012
- Jia, S., Xie, H., Yin, X., Gao, S., 10.1007/s10492-009-0001-0, Appl. Math., Praha 54 (2009), 1-15. (2009) Zbl1212.65434MR2476018DOI10.1007/s10492-009-0001-0
- Li, J., 10.1002/mma.1051, Math. Methods Appl. Sci. 32 (2009), 470-479. (2009) MR2493591DOI10.1002/mma.1051
- Li, J., He, Y. N., 10.1002/num.20188, Numer. Methods Partial Differ. Equations 23 (2007), 421-436. (2007) Zbl1107.76046MR2289460DOI10.1002/num.20188
- Li, J., He, Y. N., 10.1016/j.cam.2007.02.015, J. Comput. Appl. Math. 214 (2008), 58-65. (2008) Zbl1132.35436MR2391672DOI10.1016/j.cam.2007.02.015
- Li, J., He, Y. N., Wu, J. H., 10.1016/j.na.2011.06.033, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 6499-6511. (2011) Zbl1227.65115MR2834057DOI10.1016/j.na.2011.06.033
- Li, J., Mei, L. Q., Chen, Z. X., 10.1002/num.20610, Numer. Methods Partial Differ. Equations 28 (2012), 115-126. (2012) Zbl1234.65038MR2864661DOI10.1002/num.20610
- Li, J., Wang, J., Ye, X., Superconvergence by -projections for stabilized finite element methods for the Stokes equations, Int. J. Numer. Anal. Model. 6 (2009), 711-723. (2009) MR2574761
- Liu, H. P., Yan, N. N., 10.1016/j.cma.2012.04.009, Comput. Methods Appl. Mech. Eng. 233/236 (2012), 81-91. (2012) Zbl1253.74107MR2924022DOI10.1016/j.cma.2012.04.009
- Lovadina, C., Lyly, M., Stenberg, R., 10.1002/num.20342, Numer. Methods Partial Differ. Equations 25 (2009), 244-257. (2009) Zbl1169.65109MR2473688DOI10.1002/num.20342
- Wang, J., Superconvergence analysis for finite element solutions by the least-squares surface fitting on irregular meshes for smooth problems, J. Math. Study 33 (2000), 229-243. (2000) Zbl0987.65108MR1868268
- Wang, J., Ye, X., 10.1137/S003614290037589X, SIAM J. Numer. Anal. 39 (2001), 1001-1013 (electronic). (2001) Zbl1002.65118MR1860454DOI10.1137/S003614290037589X
- Ye, X., 10.1002/num.1036, Numer. Methods Partial Differ. Equations 18 (2002), 143-154. (2002) Zbl1003.65121MR1902289DOI10.1002/num.1036
- Yin, X., Xie, H., Jia, S., Gao, S., 10.1016/j.cam.2007.03.028, J. Comput. Appl. Math. 215 (2008), 127-141. (2008) Zbl1149.65090MR2400623DOI10.1016/j.cam.2007.03.028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.