Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method
Applications of Mathematics (2006)
- Volume: 51, Issue: 1, page 73-88
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topChen, Wei, and Lin, Qun. "Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method." Applications of Mathematics 51.1 (2006): 73-88. <http://eudml.org/doc/33245>.
@article{Chen2006,
abstract = {By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally, numerical experiments are reported.},
author = {Chen, Wei, Lin, Qun},
journal = {Applications of Mathematics},
keywords = {eigenvalue problem; Stokes problem; stream function-vorticity-pressure method; asymptotic expansion; extrapolation; a posteriori error estimates; eigenvalue problem; Stokes problem; stream function-vorticity-pressure method; error expansion; convergence; eigenfunctions; bilinear finite element; extrapolation; error estimate; numerical experiments},
language = {eng},
number = {1},
pages = {73-88},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method},
url = {http://eudml.org/doc/33245},
volume = {51},
year = {2006},
}
TY - JOUR
AU - Chen, Wei
AU - Lin, Qun
TI - Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method
JO - Applications of Mathematics
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 1
SP - 73
EP - 88
AB - By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally, numerical experiments are reported.
LA - eng
KW - eigenvalue problem; Stokes problem; stream function-vorticity-pressure method; asymptotic expansion; extrapolation; a posteriori error estimates; eigenvalue problem; Stokes problem; stream function-vorticity-pressure method; error expansion; convergence; eigenfunctions; bilinear finite element; extrapolation; error estimate; numerical experiments
UR - http://eudml.org/doc/33245
ER -
References
top- Eigenvalue problems, Handbook of Numerical Analysis, Vol. II, Finite Element Method (Part I), P. G. Ciarlet, J. L. Lions (eds.), North-Holland Publ., Amsterdam, 1991, pp. 641–787. (1991) MR1115240
- 10.1007/BF01399555, Numer. Math. 33 (1979), 211–224. (1979) MR0549450DOI10.1007/BF01399555
- 10.1007/s006070050053, Computing 63 (1999), 97–107. (1999) MR1736662DOI10.1007/s006070050053
- 10.1090/S0025-5718-99-01072-8, Math. Comput. 69 (2000), 121–140. (2000) MR1642801DOI10.1090/S0025-5718-99-01072-8
- On the convergence of eigenvalues for mixed formulations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 25 (1997), 131–154. (1997) MR1655512
- Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics Vol. 15, Springer-Verlag, New York, 1991. (1991) MR1115205
- 10.1098/rspa.2000.0573, Proc. R. Soc. Lond. A 456 (2000), 1505–1521. (2000) MR1808762DOI10.1098/rspa.2000.0573
- The Finite Element Method for Elliptic Problems, North-Holland Publ., Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
- A mixed finite element method for the biharmonic equation, Aspects finite Elem. partial Differ. Equat., Proc. Symp. Madison, C. de Boor (ed.), Academic Press, New York, 1974, pp. 125–145. (1974) MR0657977
- Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986. (1986) MR0851383
- 10.1007/BF01399323, Numer. Math. 33 (1979), 397–424. (1979) MR0553350DOI10.1007/BF01399323
- 10.1023/A:1014291224961, Adv. Comput. Math. 15 (2001), 107–138. (2001) MR1887731DOI10.1023/A:1014291224961
- 10.1007/s002110100386, Numer. Math. 93 (2002), 333–359. (2002) MR1941400DOI10.1007/s002110100386
- 10.2977/prims/1195189071, Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978), 399–414. (1978) MR0509196DOI10.2977/prims/1195189071
- 10.4064/-24-1-389-396, Banach Cent. Publ. 24 (1990), 389–396. (1990) DOI10.4064/-24-1-389-396
- 10.1007/BF00047538, Acta Appl. Math. 9 (1987), 175–198. (1987) MR0900263DOI10.1007/BF00047538
- Finite Element Methods: Accuracy and Improvement, China Sci. Tech. Press, Beijing, 2005. (2005)
- Asymptotic expansions for finite element eigenvalues and finite element solution, Bonn Math. Schr. 158 (1984), 1–10. (1984) Zbl0549.65072MR0793412
- High Efficiency FEM Construction and Analysis, Hebei Univ. Press, , 1996. (1996)
- 10.1090/S0025-5718-1981-0606505-9, Math. Comput. 36 (1981), 427–453. (1981) MR0606505DOI10.1090/S0025-5718-1981-0606505-9
- 10.1090/S0025-5718-1975-0383117-3, Math. Comput. 29 (1975), 712–725. (1975) Zbl0315.35068MR0383117DOI10.1090/S0025-5718-1975-0383117-3
- 10.1137/0713019, SIAM J. Numer. Anal. 13 (1976), 185–197. (1976) Zbl0334.76010MR0447842DOI10.1137/0713019
- 10.1002/num.1690080202, Numer. Methods Partial Differ. Equations 8 (1992), 97–111. (1992) MR1148797DOI10.1002/num.1690080202
- 10.1007/BF01396493, Numer. Math. 33 (1979), 23–42. (1979) MR0545740DOI10.1007/BF01396493
- 10.1051/m2an/1991250101511, RAIRO Modélisation Math. Anal. Numér. 25 (1991), 151–168. (1991) MR1086845DOI10.1051/m2an/1991250101511
- 10.1051/m2an/1984180201751, RAIRO, Anal. Numér. 18 (1984), 175–182. (1984) DOI10.1051/m2an/1984180201751
- 10.1137/S003614290037589X, SIAM J. Numer. Anal. 39 (2001), 1001–1013. (2001) MR1860454DOI10.1137/S003614290037589X
- 10.1007/BF02684402, Computing 59 (1997), 29–41. (1997) Zbl0883.65082MR1465309DOI10.1007/BF02684402
- 10.1090/S0025-5718-99-01180-1, Math. Comput. 70 (2001), 17–25. (2001) MR1677419DOI10.1090/S0025-5718-99-01180-1
- 10.1002/num.1036, Numer. Methods Partial Differ. Equations 18 (2002), 143–154. (2002) Zbl1003.65121MR1902289DOI10.1002/num.1036
- 10.1007/s002110050070, Numer. Math. 68 (1994), 427–435. (1994) Zbl0823.65110MR1313153DOI10.1007/s002110050070
Citations in EuDML Documents
top- Hongtao Chen, Shanghui Jia, Hehu Xie, Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems
- Pengzhan Huang, Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method
- Shanghui Jia, Hehu Xie, Xiaobo Yin, Shaoqin Gao, Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.