Displaying similar documents to “Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method”

Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem

Xinlong Feng, Zhifeng Weng, Hehu Xie (2014)

Applications of Mathematics

Similarity:

This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical...

A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations

Vivette Girault, Béatrice Rivière, Mary F. Wheeler (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we solve the time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.

Two-level stabilized nonconforming finite element method for the Stokes equations

Haiyan Su, Pengzhan Huang, Xinlong Feng (2013)

Applications of Mathematics

Similarity:

In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the N C P 1 - P 1 pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size H and a large stabilized...

A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions

Christine Bernardi, Frédéric Hecht, Rüdiger Verfürth (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider a variational formulation of the three-dimensional Navier–Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish and error estimates.

On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations

Xuejun Xu, C. O. Chow, S. H. Lui (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, a Dirichlet-Neumann substructuring domain decomposition method is presented for a finite element approximation to the nonlinear Navier-Stokes equations. It is shown that the Dirichlet-Neumann domain decomposition sequence converges geometrically to the true solution provided the Reynolds number is sufficiently small. In this method, subdomain problems are linear. Other version where the subdomain problems are linear Stokes problems is also presented.

Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems

Hongtao Chen, Shanghui Jia, Hehu Xie (2009)

Applications of Mathematics

Similarity:

In this paper we propose a method for improving the convergence rate of the mixed finite element approximations for the Stokes eigenvalue problem. It is based on a postprocessing strategy that consists of solving an additional Stokes source problem on an augmented mixed finite element space which can be constructed either by refining the mesh or by using the same mesh but increasing the order of the mixed finite element space.