Admissible invariant estimators in a linear model
Kybernetika (2014)
- Volume: 50, Issue: 3, page 310-321
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topStępniak, Czesław. "Admissible invariant estimators in a linear model." Kybernetika 50.3 (2014): 310-321. <http://eudml.org/doc/261926>.
@article{Stępniak2014,
abstract = {Let $\mathbf \{y\}$ be observation vector in the usual linear model with expectation $\mathbf \{A\beta \}$ and covariance matrix known up to a multiplicative scalar, possibly singular. A linear statistic $\mathbf \{a\}^\{T\} \mathbf \{y\}$ is called invariant estimator for a parametric function $\phi = \mathbf \{c\}^\{T\}\mathbf \{\beta \}$ if its MSE depends on $\mathbf \{\beta \}$ only through $\phi $. It is shown that $ \mathbf \{a\}^\{T\}\mathbf \{y\}$ is admissible invariant for $\phi $, if and only if, it is a BLUE of $\phi ,$ in the case when $\phi $ is estimable with zero variance, and it is of the form $k\widehat\{\phi \}$, where $k\in \left\langle 0,1\right\rangle $ and $ \widehat\{\phi \}$ is an arbitrary BLUE, otherwise. This result is used in the one- and two-way ANOVA models. Our paper is self-contained and accessible, also for non-specialists.},
author = {Stępniak, Czesław},
journal = {Kybernetika},
keywords = {linear estimator; invariant estimator; admissibility; one-way/two-way ANOVA; linear estimator; invariant estimator; admissibility; one-way/two-way ANOVA},
language = {eng},
number = {3},
pages = {310-321},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Admissible invariant estimators in a linear model},
url = {http://eudml.org/doc/261926},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Stępniak, Czesław
TI - Admissible invariant estimators in a linear model
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 3
SP - 310
EP - 321
AB - Let $\mathbf {y}$ be observation vector in the usual linear model with expectation $\mathbf {A\beta }$ and covariance matrix known up to a multiplicative scalar, possibly singular. A linear statistic $\mathbf {a}^{T} \mathbf {y}$ is called invariant estimator for a parametric function $\phi = \mathbf {c}^{T}\mathbf {\beta }$ if its MSE depends on $\mathbf {\beta }$ only through $\phi $. It is shown that $ \mathbf {a}^{T}\mathbf {y}$ is admissible invariant for $\phi $, if and only if, it is a BLUE of $\phi ,$ in the case when $\phi $ is estimable with zero variance, and it is of the form $k\widehat{\phi }$, where $k\in \left\langle 0,1\right\rangle $ and $ \widehat{\phi }$ is an arbitrary BLUE, otherwise. This result is used in the one- and two-way ANOVA models. Our paper is self-contained and accessible, also for non-specialists.
LA - eng
KW - linear estimator; invariant estimator; admissibility; one-way/two-way ANOVA; linear estimator; invariant estimator; admissibility; one-way/two-way ANOVA
UR - http://eudml.org/doc/261926
ER -
References
top- Baksalary, J. K., Markiewicz, A., 10.1016/0378-3758(88)90042-0, J. Statist. Plann. Inference 19 (1988), 349-359. Zbl0656.62076MR0955399DOI10.1016/0378-3758(88)90042-0
- Baksalary, J. K., Markiewicz, A., A matrix inequality and admissibility of linear estimators with respect to the mean squared error criterion., Linear Algebra Appl. 112 (1989), 9-18. MR0976326
- Baksalary, J. K., Markiewicz, A., 10.1016/0378-3758(90)90124-D, J. Statist. Plann. Inference 26 (1990), 161-173. MR1079260DOI10.1016/0378-3758(90)90124-D
- Cohen, A., 10.1214/aoms/1177700272, Ann. Math. Statist. 36 (1965), 78-87. MR0172399DOI10.1214/aoms/1177700272
- Cohen, A., 10.1214/aoms/1177699528, Ann. Math. Statist. 37 (1966), 458-463. MR0189164DOI10.1214/aoms/1177699528
- Groß, J., 10.1137/S0895479896311244, SIAM J. Matrix Anal. Appl. 19 (1998), 365-368. Zbl0912.15031MR1614042DOI10.1137/S0895479896311244
- Groß, J., Löwner partial ordering and space preordering of Hermitian non-negative definite matrices., Linear Algebra Appl. 326 (2001), 215-223. Zbl0979.15019MR1815961
- Groß, J., Markiewicz, A., Characterization of admissible linear estimators in the linear model., Linear Algebra Appl. 388 (2004), 239-248. MR2077862
- Halmos, P. R., Finite-Dimensional Vector Spaces. Second edition., Springer-Verlag, New York 1993. MR0409503
- Ip, W., Wong, H., Liu, J., 10.1016/j.jspi.2004.05.005, J. Statist. Plann. Inference 135 (2005), 371-383. Zbl1074.62037MR2200475DOI10.1016/j.jspi.2004.05.005
- Klonecki, W., Linear estimators of mean vector in linear models: Problem of admissibility., Probab. Math. Statist. 2 (1982), 167-178. MR0711891
- Klonecki, W., Zontek, S., 10.1016/0047-259X(88)90098-X, J. Multivariate Anal. 24 (1988), 11-30. Zbl0664.62008MR0925126DOI10.1016/0047-259X(88)90098-X
- Kruskal, W., 10.1214/aoms/1177698505, Ann. Math. Statist. 39 (1968), 70-75. Zbl0162.21902MR0222998DOI10.1214/aoms/1177698505
- LaMotte, L. R., 10.1214/aos/1176345707, Ann. Statist. 10 (1982), 245-255. MR0642736DOI10.1214/aos/1176345707
- LaMotte, L. R., 10.1007/BF02717103, Metrika 45 (1997), 197-211. MR1452063DOI10.1007/BF02717103
- Lehmann, E. L., Scheffé, H., Completeness, similar regions, and unbiased estimation - Part 1., Sankhyā A, 10 (1950), 305-340. MR0039201
- Olsen, A., Seely, J., Birkes, D., 10.1214/aos/1176343586, Ann. Statist. 4 (1976), 823-1051. Zbl0344.62060MR0418345DOI10.1214/aos/1176343586
- Rao, C. R., Linear Statistical Inference., Wiley, New York 1973. Zbl0256.62002MR0346957
- Rao, C. R., 10.1214/aos/1176343639, Ann. Statist. 4 (1976), 1023-1037. Correction Ann. Statist. 7 (1979), 696-696. Zbl0421.62047MR0420979DOI10.1214/aos/1176343639
- Scheffé, H., The Analysis of Variance., Wiley, New York 1959. Zbl0998.62500MR0116429
- Stępniak, C., 10.1002/bimj.4710260725, Biom. J. 26 (1984), 815-816. Zbl0565.62042MR0775200DOI10.1002/bimj.4710260725
- Stępniak, C., 10.1016/0024-3795(85)90043-6, Linear Algebra Appl. 70 (1985), 67-71. Zbl0578.15019MR0808532DOI10.1016/0024-3795(85)90043-6
- Stępniak, C., 10.1007/BF02491490, Ann. Inst. Statist. Math. A 39 (1987), 563-573. Zbl0691.62010MR0930530DOI10.1007/BF02491490
- Stępniak, C., 10.1016/0047-259X(89)90052-3, J. Multivariate Anal. 31 (1989), 90-106. Zbl0709.62055MR1022355DOI10.1016/0047-259X(89)90052-3
- Stępniak, C., 10.1016/j.jspi.2008.04.001, J. Statist. Plann. Inference 139 (2009), 151-163. Zbl1149.62319MR2473994DOI10.1016/j.jspi.2008.04.001
- Stępniak, C., From equivalent linear equations to Gauss-Markov theorem., J. Inequal. Appl. (2010), ID 259672, 5 pages. Zbl1204.62120MR2671027
- Stępniak, C., 10.1016/j.jspi.2011.01.022, J. Statist. Plann. Inference 141 (2011), 2489-2493. Zbl1214.62076MR2775225DOI10.1016/j.jspi.2011.01.022
- Synówka-Bejenka, E., Zontek, S., 10.1007/s00184-007-0149-0, Metrika 68 (2008), 157-172. MR2434311DOI10.1007/s00184-007-0149-0
- Zontek, S., Admissibility of limits of the unique locally best estimators with application to variance components models., Probab. Math. Statist. 9 (1988), 29-44. MR0985523
- Zyskind, G., 10.1214/aoms/1177698779, Ann. Math. Statist. 38 (1967), 1092-1109. MR0214237DOI10.1214/aoms/1177698779
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.