On admissibility of linear estimators in models with finitely generated parameter space

Ewa Synówka-Bejenka; Stefan Zontek

Kybernetika (2016)

  • Volume: 52, Issue: 5, page 724-734
  • ISSN: 0023-5954

Abstract

top
The paper refers to the research on the characterization of admissible estimators initiated by Cohen [2]. In our paper it is proved that for linear models with finitely generated parameter space the limit of a sequence of the unique locally best linear estimators is admissible. This result is used to give a characterization of admissible linear estimators of fixed and random effects in a random linear model for spatially located sensors measuring intensity of a source of signals in discrete instants of time.

How to cite

top

Synówka-Bejenka, Ewa, and Zontek, Stefan. "On admissibility of linear estimators in models with finitely generated parameter space." Kybernetika 52.5 (2016): 724-734. <http://eudml.org/doc/287568>.

@article{Synówka2016,
abstract = {The paper refers to the research on the characterization of admissible estimators initiated by Cohen [2]. In our paper it is proved that for linear models with finitely generated parameter space the limit of a sequence of the unique locally best linear estimators is admissible. This result is used to give a characterization of admissible linear estimators of fixed and random effects in a random linear model for spatially located sensors measuring intensity of a source of signals in discrete instants of time.},
author = {Synówka-Bejenka, Ewa, Zontek, Stefan},
journal = {Kybernetika},
keywords = {linear model; linear estimation; linear prediction; admissibility; admissibility among an affine set; locally best estimator; linear model; linear estimation; linear prediction; admissibility; admissibility among an affine set; locally best estimator},
language = {eng},
number = {5},
pages = {724-734},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On admissibility of linear estimators in models with finitely generated parameter space},
url = {http://eudml.org/doc/287568},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Synówka-Bejenka, Ewa
AU - Zontek, Stefan
TI - On admissibility of linear estimators in models with finitely generated parameter space
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 5
SP - 724
EP - 734
AB - The paper refers to the research on the characterization of admissible estimators initiated by Cohen [2]. In our paper it is proved that for linear models with finitely generated parameter space the limit of a sequence of the unique locally best linear estimators is admissible. This result is used to give a characterization of admissible linear estimators of fixed and random effects in a random linear model for spatially located sensors measuring intensity of a source of signals in discrete instants of time.
LA - eng
KW - linear model; linear estimation; linear prediction; admissibility; admissibility among an affine set; locally best estimator; linear model; linear estimation; linear prediction; admissibility; admissibility among an affine set; locally best estimator
UR - http://eudml.org/doc/287568
ER -

References

top
  1. Baksalary, J. K., Markiewicz, A., 10.1016/0378-3758(88)90042-0, J. Statist. Plann. Inference 19 (1988), 349-359. Zbl0656.62076MR0955399DOI10.1016/0378-3758(88)90042-0
  2. Cohen, A., 10.1214/aoms/1177699528, Ann. Math. Statist. 37 (1966), 458-463. MR0189164DOI10.1214/aoms/1177699528
  3. Gnot, S., Kleffe, J., 10.1016/0378-3758(83)90045-9, J. Statist. Plann. Inference 8 (1983), 267-279. Zbl0561.62064MR0729245DOI10.1016/0378-3758(83)90045-9
  4. Gnot, S., Rafajłowicz, E., Urbańska-Motyka, A., 10.1023/a:1012426923971, Ann. Inst. Statist Math. 53 (2001), 370-379. MR1841142DOI10.1023/a:1012426923971
  5. Goldberger, A. S., 10.1080/01621459.1962.10480665, J. Amer. Statist. Assoc. 57 (1962), 369-375. Zbl0124.35502MR0143295DOI10.1080/01621459.1962.10480665
  6. Groß, J., Markiewicz, A., 10.1016/s0024-3795(03)00459-2, Linear Algebra Appl. 388 (2004), 239-248. MR2077862DOI10.1016/s0024-3795(03)00459-2
  7. Harville, D. A., 10.1214/aos/1176343414, Ann. Statist. 2 (1976), 384-395. Zbl0323.62043MR0398007DOI10.1214/aos/1176343414
  8. Henderson, C. R., Estimation of genetic parameters (abstract)., Ann. Math. Statist. 21 (1950), 309-310. 
  9. Henderson, C. R., Selection index and expected genetic advance., In: Statistical Genetics and Plant Breeding (W. D. Hanson and H. F. Robinson, eds.), NAS-NRC 982, Washington 1963, pp. 141-163. 
  10. Jiang, J., 10.1016/s0167-7152(96)00089-2, Statist. Probab. Lett. 32 (1997), 321-324. Zbl0886.62066MR1440842DOI10.1016/s0167-7152(96)00089-2
  11. Klonecki, W., Zontek, S., 10.1016/0047-259x(88)90098-x, J. Multivariate Anal. 24 (1988), 11-30. Zbl0664.62008MR0925126DOI10.1016/0047-259x(88)90098-x
  12. LaMotte, L. R., 10.1214/aos/1176345707, Ann. Statist. 10 (1982), 245-255. Zbl0485.62070MR0642736DOI10.1214/aos/1176345707
  13. LaMotte, L. R., 10.1007/bf02717103, Metrika 45 (1997), 197-211. MR1452063DOI10.1007/bf02717103
  14. Liu, X. Q., Rong, J. Y., Liu, X. Y., 10.1016/j.jmva.2008.01.004, J. Multivariate Anal. 99 (2008), 1503-1517. Zbl1144.62047MR2444809DOI10.1016/j.jmva.2008.01.004
  15. Olsen, A., Seely, J., Birkes, D., 10.1214/aos/1176343586, Ann. Statist. 4 (1976), 878-890. Zbl0344.62060MR0418345DOI10.1214/aos/1176343586
  16. Rao, C. R., 10.1214/aos/1176343639, Ann. Statist. 4 (1976), 1023-1037. Zbl0421.62047MR0420979DOI10.1214/aos/1176343639
  17. Rao, C. R., Estimation in linear models with mixed effects: a unified theory., In: Proc. Second International Tampere Conference in Statistics (T. Pukkila and S. Puntanen, eds.), Dept. of Mathematical Sciences, Univ. of Tampere, Tampere 1987, pp. 73-98. 
  18. Robinson, G. K., 10.1214/ss/1177011933, Statist. Sci. 6 (1991), 15-51. Zbl0955.62500MR1108815DOI10.1214/ss/1177011933
  19. Shiqing, W., Ying, M., Zhijun, F., 10.1109/ccie.2010.133, In: Proc. 2010 International Conference on Computing, Control and Industrial Engineering, IEEE, Wuhan 2010, pp. 56-60. DOI10.1109/ccie.2010.133
  20. Stępniak, C., 10.1002/bimj.4710260725, Biometrical J. 26 (1984), 815-816. Zbl0565.62042MR0775200DOI10.1002/bimj.4710260725
  21. Stępniak, C., 10.1007/bf02491490, Ann. Inst. Statist. Math. A 39 (1987), 563-573. Zbl0691.62010MR0930530DOI10.1007/bf02491490
  22. Stępniak, C., 10.14736/kyb-2014-3-0310, Kybernetika 50 (2014), 310-321. MR3245533DOI10.14736/kyb-2014-3-0310
  23. Synówka-Bejenka, E., Zontek, S., 10.1007/s00184-007-0149-0, Metrika 68 (2008), 157-172. MR2434311DOI10.1007/s00184-007-0149-0
  24. Tian, Y., 10.1007/s00184-015-0533-0, Metrika 78 (2015), 905-918. Zbl1329.62264MR3407588DOI10.1007/s00184-015-0533-0
  25. Zontek, S., 10.1016/0047-259x(87)90174-6, J. Multivariate Anal. 23 (1987), 1-12. Zbl0647.62062MR0911790DOI10.1016/0047-259x(87)90174-6
  26. Zontek, S., Admissibility of limits of the unique locally best linear estimators with application to variance components models., Probab. Math. Statist. 9 (1988), 29-44. Zbl0674.62008MR0985523

NotesEmbed ?

top

You must be logged in to post comments.