Characterization of admissible linear estimators under extended balanced loss function

Buatikan Mirezi; Selahattin Kaçıranlar

Kybernetika (2021)

  • Volume: 57, Issue: 4, page 613-627
  • ISSN: 0023-5954

Abstract

top
In this paper, we study the admissibility of linear estimator of regression coefficient in linear model under the extended balanced loss function (EBLF). The sufficient and necessary condition for linear estimators to be admissible are obtained respectively in homogeneous and non-homogeneous classes. Furthermore, we show that admissible linear estimator under the EBLF is a convex combination of the admissible linear estimator under the sum of square residuals and quadratic loss function.

How to cite

top

Mirezi, Buatikan, and Kaçıranlar, Selahattin. "Characterization of admissible linear estimators under extended balanced loss function." Kybernetika 57.4 (2021): 613-627. <http://eudml.org/doc/298017>.

@article{Mirezi2021,
abstract = {In this paper, we study the admissibility of linear estimator of regression coefficient in linear model under the extended balanced loss function (EBLF). The sufficient and necessary condition for linear estimators to be admissible are obtained respectively in homogeneous and non-homogeneous classes. Furthermore, we show that admissible linear estimator under the EBLF is a convex combination of the admissible linear estimator under the sum of square residuals and quadratic loss function.},
author = {Mirezi, Buatikan, Kaçıranlar, Selahattin},
journal = {Kybernetika},
keywords = {admissibility; extended balanced loss function; linear admissible estimator},
language = {eng},
number = {4},
pages = {613-627},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Characterization of admissible linear estimators under extended balanced loss function},
url = {http://eudml.org/doc/298017},
volume = {57},
year = {2021},
}

TY - JOUR
AU - Mirezi, Buatikan
AU - Kaçıranlar, Selahattin
TI - Characterization of admissible linear estimators under extended balanced loss function
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 4
SP - 613
EP - 627
AB - In this paper, we study the admissibility of linear estimator of regression coefficient in linear model under the extended balanced loss function (EBLF). The sufficient and necessary condition for linear estimators to be admissible are obtained respectively in homogeneous and non-homogeneous classes. Furthermore, we show that admissible linear estimator under the EBLF is a convex combination of the admissible linear estimator under the sum of square residuals and quadratic loss function.
LA - eng
KW - admissibility; extended balanced loss function; linear admissible estimator
UR - http://eudml.org/doc/298017
ER -

References

top
  1. Baksalary, J. K., Markiewicz, A., , Linear Algebra Appl. 70 (1985), 9-19. DOI
  2. Baksalary, J. K., Markiewicz, A., , Statist. Planning Inference 13 (1986), 395-398. DOI
  3. Baksalary, J. K., Markiewicz, A., , Statist. Planning Inference 19 (1988), 349-359. Zbl0656.62076DOI
  4. Cohen, A., , Ann. Math. Statist. 37 (1966), 458-463. DOI
  5. Chen, X. R., Chen, G., Wu, Q., Zhao, L., Parameter Estimation Theory for Linear Models., Science Press, Beijing 1985. 
  6. Chaturvedi, A., Shalabh, , Comm. Statist. Theory and Methods 43 (2014), 4253-4264. DOI
  7. Cao, M., , Multivariate Analysis 124 (2014), 25-30. DOI
  8. Cao, M., He, D., , Comm. Statist. Theory and Methods 48 (2019), 2700-2706. DOI
  9. Dong, L., Wu, Q., Necessary and sufficient conditions for linear estimators of stochastic regression coefficients and parameters to be admissible under quadratic loss., Acta Math. Sinica 31 (1988), 145-157. 
  10. Graybill, F. A., Matrices With Application in Statistics., Californie 1983. 
  11. Groß, J., Linear Regression., Springer-Verlag, Berlin Heidelberg 2003. 
  12. Gross, J., Markiewicz, A., , Linear Algebra Appl. 388 (2004), 239-248. DOI
  13. Hoffmann, K., , Statist. Planning Inference 48 (1995), 371-377. DOI
  14. Klonecki, W., Zontek, S., 10.1016/0047-259X(88)90098-X, Multivariate Analysis 24 (1998), 11-30. Zbl0664.62008DOI10.1016/0047-259X(88)90098-X
  15. Kaçiranlar, S., Dawoud, I., 10.1016/j.cam.2018.06.021, Comput. Appl. Math. 345 (2019), 86-98. DOI10.1016/j.cam.2018.06.021
  16. Lehmann, E. L., Casella, G., Theory of Point Estimation. Second edition., Springer-Verlag, New York 2005. 
  17. Markiewicz, A., 10.1016/0167-7152(95)00056-9, Statist. Probab. Lett. 27 (1996), 145-148. DOI10.1016/0167-7152(95)00056-9
  18. Özbay, N., Kaçiranlar, S., , Comm. Statist. Theory and Methods 46 (2017), 11315-11326. DOI
  19. Rao, C. R., Estimation of parameters in a linear model., Ann. Statist. 4 (1976), 1023-1037. Zbl0421.62047
  20. Stępniak, C., , J. Multivariate Analysis 31 (1989), 90-106. DOI
  21. Shalabh, S., Performance of Stein - rule Procedure for simultaneous prediction of actual and average values of study variable in linear regression model., Bull. Int. Statist. Inst. 56 (1995), 1375-1390. 
  22. Shalabh, S., Toutenburg, H., Heumann, C., , J. Statist. Comput. Simul. 79 (2009), 1259-1273. DOI
  23. Stępniak, C., Admissible invariant estimators in a linear model., Kybernetika 50 (2014), 310-321. 
  24. Synówka-Bejenka, E., Zontek, S., On admissibility of linear estimators in models with finitely generated parameter space., Kybernetika (2016), 724-734. 
  25. Xu, X., Wu, Q., Linearly admissible estimators of regression coefficient under balanced loss., Acta Math. Sci. 20 (2000), 468-473. 
  26. Lu, C. Y., Shi, N. Z., , Linear Algebra Appl. 354 (2002), 187-194. DOI
  27. Zellner, A., Bayesian and Non-Bayesian Estimation Using Balanced Loss Functions., Statistical Decision Theory and Related Topics V, Springer, New York 1994, pp. 377-390. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.