Characterization of admissible linear estimators under extended balanced loss function
Buatikan Mirezi; Selahattin Kaçıranlar
Kybernetika (2021)
- Volume: 57, Issue: 4, page 613-627
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMirezi, Buatikan, and Kaçıranlar, Selahattin. "Characterization of admissible linear estimators under extended balanced loss function." Kybernetika 57.4 (2021): 613-627. <http://eudml.org/doc/298017>.
@article{Mirezi2021,
abstract = {In this paper, we study the admissibility of linear estimator of regression coefficient in linear model under the extended balanced loss function (EBLF). The sufficient and necessary condition for linear estimators to be admissible are obtained respectively in homogeneous and non-homogeneous classes. Furthermore, we show that admissible linear estimator under the EBLF is a convex combination of the admissible linear estimator under the sum of square residuals and quadratic loss function.},
author = {Mirezi, Buatikan, Kaçıranlar, Selahattin},
journal = {Kybernetika},
keywords = {admissibility; extended balanced loss function; linear admissible estimator},
language = {eng},
number = {4},
pages = {613-627},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Characterization of admissible linear estimators under extended balanced loss function},
url = {http://eudml.org/doc/298017},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Mirezi, Buatikan
AU - Kaçıranlar, Selahattin
TI - Characterization of admissible linear estimators under extended balanced loss function
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 4
SP - 613
EP - 627
AB - In this paper, we study the admissibility of linear estimator of regression coefficient in linear model under the extended balanced loss function (EBLF). The sufficient and necessary condition for linear estimators to be admissible are obtained respectively in homogeneous and non-homogeneous classes. Furthermore, we show that admissible linear estimator under the EBLF is a convex combination of the admissible linear estimator under the sum of square residuals and quadratic loss function.
LA - eng
KW - admissibility; extended balanced loss function; linear admissible estimator
UR - http://eudml.org/doc/298017
ER -
References
top- Baksalary, J. K., Markiewicz, A., , Linear Algebra Appl. 70 (1985), 9-19. DOI
- Baksalary, J. K., Markiewicz, A., , Statist. Planning Inference 13 (1986), 395-398. DOI
- Baksalary, J. K., Markiewicz, A., , Statist. Planning Inference 19 (1988), 349-359. Zbl0656.62076DOI
- Cohen, A., , Ann. Math. Statist. 37 (1966), 458-463. DOI
- Chen, X. R., Chen, G., Wu, Q., Zhao, L., Parameter Estimation Theory for Linear Models., Science Press, Beijing 1985.
- Chaturvedi, A., Shalabh, , Comm. Statist. Theory and Methods 43 (2014), 4253-4264. DOI
- Cao, M., , Multivariate Analysis 124 (2014), 25-30. DOI
- Cao, M., He, D., , Comm. Statist. Theory and Methods 48 (2019), 2700-2706. DOI
- Dong, L., Wu, Q., Necessary and sufficient conditions for linear estimators of stochastic regression coefficients and parameters to be admissible under quadratic loss., Acta Math. Sinica 31 (1988), 145-157.
- Graybill, F. A., Matrices With Application in Statistics., Californie 1983.
- Groß, J., Linear Regression., Springer-Verlag, Berlin Heidelberg 2003.
- Gross, J., Markiewicz, A., , Linear Algebra Appl. 388 (2004), 239-248. DOI
- Hoffmann, K., , Statist. Planning Inference 48 (1995), 371-377. DOI
- Klonecki, W., Zontek, S., 10.1016/0047-259X(88)90098-X, Multivariate Analysis 24 (1998), 11-30. Zbl0664.62008DOI10.1016/0047-259X(88)90098-X
- Kaçiranlar, S., Dawoud, I., 10.1016/j.cam.2018.06.021, Comput. Appl. Math. 345 (2019), 86-98. DOI10.1016/j.cam.2018.06.021
- Lehmann, E. L., Casella, G., Theory of Point Estimation. Second edition., Springer-Verlag, New York 2005.
- Markiewicz, A., 10.1016/0167-7152(95)00056-9, Statist. Probab. Lett. 27 (1996), 145-148. DOI10.1016/0167-7152(95)00056-9
- Özbay, N., Kaçiranlar, S., , Comm. Statist. Theory and Methods 46 (2017), 11315-11326. DOI
- Rao, C. R., Estimation of parameters in a linear model., Ann. Statist. 4 (1976), 1023-1037. Zbl0421.62047
- Stępniak, C., , J. Multivariate Analysis 31 (1989), 90-106. DOI
- Shalabh, S., Performance of Stein - rule Procedure for simultaneous prediction of actual and average values of study variable in linear regression model., Bull. Int. Statist. Inst. 56 (1995), 1375-1390.
- Shalabh, S., Toutenburg, H., Heumann, C., , J. Statist. Comput. Simul. 79 (2009), 1259-1273. DOI
- Stępniak, C., Admissible invariant estimators in a linear model., Kybernetika 50 (2014), 310-321.
- Synówka-Bejenka, E., Zontek, S., On admissibility of linear estimators in models with finitely generated parameter space., Kybernetika (2016), 724-734.
- Xu, X., Wu, Q., Linearly admissible estimators of regression coefficient under balanced loss., Acta Math. Sci. 20 (2000), 468-473.
- Lu, C. Y., Shi, N. Z., , Linear Algebra Appl. 354 (2002), 187-194. DOI
- Zellner, A., Bayesian and Non-Bayesian Estimation Using Balanced Loss Functions., Statistical Decision Theory and Related Topics V, Springer, New York 1994, pp. 377-390.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.