Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups

Mohammed Guediri; Mona Bin-Asfour

Archivum Mathematicum (2014)

  • Volume: 050, Issue: 3, page 171-192
  • ISSN: 0044-8753

Abstract

top
The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if , is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group N , then the restriction of , to the center of the Lie algebra of N is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group H 2 n + 1 can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if n = 1 . We also show that the free 2-step nilpotent Lie group on m generators N m , 2 admits a Ricci-flat left-invariant Lorentzian metric if and only if m = 2 or m = 3 , and we determine all Ricci-flat left-invariant Lorentzian metrics on the free 2 -step nilpotent Lie group on 3 generators N 3 , 2 .

How to cite

top

Guediri, Mohammed, and Bin-Asfour, Mona. "Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups." Archivum Mathematicum 050.3 (2014): 171-192. <http://eudml.org/doc/261970>.

@article{Guediri2014,
abstract = {The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if $\left\langle \, ,\right\rangle $ is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group $N$, then the restriction of $\left\langle \, ,\right\rangle $ to the center of the Lie algebra of $N$ is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group $H_\{2n+1\}$ can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if $n=1$. We also show that the free 2-step nilpotent Lie group on $m$ generators $N_\{m,2\}$ admits a Ricci-flat left-invariant Lorentzian metric if and only if $m=2$ or $m=3$, and we determine all Ricci-flat left-invariant Lorentzian metrics on the free $2$-step nilpotent Lie group on $3$ generators $N_\{3,2\}$.},
author = {Guediri, Mohammed, Bin-Asfour, Mona},
journal = {Archivum Mathematicum},
keywords = {2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness; 2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness},
language = {eng},
number = {3},
pages = {171-192},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups},
url = {http://eudml.org/doc/261970},
volume = {050},
year = {2014},
}

TY - JOUR
AU - Guediri, Mohammed
AU - Bin-Asfour, Mona
TI - Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 3
SP - 171
EP - 192
AB - The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if $\left\langle \, ,\right\rangle $ is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group $N$, then the restriction of $\left\langle \, ,\right\rangle $ to the center of the Lie algebra of $N$ is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group $H_{2n+1}$ can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if $n=1$. We also show that the free 2-step nilpotent Lie group on $m$ generators $N_{m,2}$ admits a Ricci-flat left-invariant Lorentzian metric if and only if $m=2$ or $m=3$, and we determine all Ricci-flat left-invariant Lorentzian metrics on the free $2$-step nilpotent Lie group on $3$ generators $N_{3,2}$.
LA - eng
KW - 2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness; 2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness
UR - http://eudml.org/doc/261970
ER -

References

top
  1. Alekseevskii, D., Kimelfeld, B., 10.1007/BF01075445, Funct. Anal. Appl. 9 (1975), 97–102. (1975) MR0402650DOI10.1007/BF01075445
  2. Asfour, M., Curvatures of left-invariant Lorentzian metrics on solvable Lie groups, Ph.D. thesis, in preparation. 
  3. Aubert, A., Medina, A., 10.2748/tmj/1113247126, Tôhoku Math. J. (2) 55 (2003), no. 4, 487–506. (2003) Zbl1058.53055MR2017221DOI10.2748/tmj/1113247126
  4. Bérard-Bergery, L., Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes, Ann. Sci. École Norm. Sup. (4) 11 (1978), 543–576. (1978) Zbl0426.53038MR0533067
  5. Boucetta, M., Ricci flat left invariant pseudo-Riemannian metrics on 2-step nilpotent Lie groups, arXiv:0910.2563v1[math.DG], 2009. (2009) 
  6. Boucetta, M., Lebzioui, H., Nonunimodular Lorentzian flat Lie algebras, arXiv:1401.0950v1 [math.DG], 2014. (2014) 
  7. Cordero, L., Parker, P., Pseudo-Riemannian 2-step nilpotent Lie group, arXiv:math/9905188 [math.DG], 1999. (1999) 
  8. Eberlein, P., Geometry of 2-step nilpotent groups with a left-invariant metric, Ann. Sci. École Norm. Sup. (4) 27 (1994), 611–660. (1994) Zbl0820.53047MR1296558
  9. Eberlein, P., 10.1090/conm/332/05929, Contemp. Math. 332 (2003), 37–72. (2003) Zbl1045.17003MR2016090DOI10.1090/conm/332/05929
  10. Eberlein, P., Geometry of 2-step nilpotent Lie groups, Modern Dynamical Systems, Cambridge University Press, 2004, pp. 67–101. (2004) Zbl1154.22009MR2090766
  11. Grunewald, F., Margulis, G., 10.1016/0393-0440(88)90017-4, J. Geom. Phys. (1988), 493–531. (1988) Zbl0706.57022MR1075720DOI10.1016/0393-0440(88)90017-4
  12. Guediri, M., Sur la completude des pseudo-metriques invariantes a gauche sur les groupes de Lie nilpotents, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), 371–376. (1994) Zbl0838.53035MR1345607
  13. Guediri, M., 10.1023/A:1025832108196, Geom. Dedicata 100 (2003), 11–51. (2003) Zbl1037.53046MR2011112DOI10.1023/A:1025832108196
  14. Guediri, M., 10.1090/S0002-9947-02-03114-8, Trans. Amer. Math. Soc. 355 (2003), 775–786. (2003) Zbl1028.53045MR1932725DOI10.1090/S0002-9947-02-03114-8
  15. Guediri, M., 10.1016/j.difgeo.2004.05.003, Differential Geom. Appl. 21 (2004), 283–295. (2004) Zbl1085.53062MR2091365DOI10.1016/j.difgeo.2004.05.003
  16. Kaplan, A., 10.1090/S0002-9947-1980-0554324-X, Trans. Amer. Math. Soc. 258 (1980), 147–153. (1980) Zbl0393.35015MR0554324DOI10.1090/S0002-9947-1980-0554324-X
  17. Kaplan, A., 10.1007/BF00147615, Geom. Dedicata 11 (1981), 127–136. (1981) Zbl0495.53046MR0621376DOI10.1007/BF00147615
  18. Kaplan, A., 10.1112/blms/15.1.35, Bull. Lond. Math. Soc. 15 (1983), 35–42. (1983) Zbl0521.53048MR0686346DOI10.1112/blms/15.1.35
  19. Milnor, J., 10.1016/S0001-8708(76)80002-3, Adv. Math. 21 (1976), 293–329. (1976) Zbl0341.53030MR0425012DOI10.1016/S0001-8708(76)80002-3
  20. Nomizu, K., Left-invariant Lorentz metrics on Lie groups, Osaka J. Math. 16 (1979), 143–150. (1979) Zbl0397.53047MR0527022
  21. O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983. (1983) MR0719023
  22. Ovando, G., Free nilpotent Lie algebras admitting ad-invariant metrics, arXiv:1104.4773v2 [math.RA], 2011. (2011) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.