Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups
Mohammed Guediri; Mona Bin-Asfour
Archivum Mathematicum (2014)
- Volume: 050, Issue: 3, page 171-192
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topGuediri, Mohammed, and Bin-Asfour, Mona. "Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups." Archivum Mathematicum 050.3 (2014): 171-192. <http://eudml.org/doc/261970>.
@article{Guediri2014,
abstract = {The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if $\left\langle \, ,\right\rangle $ is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group $N$, then the restriction of $\left\langle \, ,\right\rangle $ to the center of the Lie algebra of $N$ is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group $H_\{2n+1\}$ can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if $n=1$. We also show that the free 2-step nilpotent Lie group on $m$ generators $N_\{m,2\}$ admits a Ricci-flat left-invariant Lorentzian metric if and only if $m=2$ or $m=3$, and we determine all Ricci-flat left-invariant Lorentzian metrics on the free $2$-step nilpotent Lie group on $3$ generators $N_\{3,2\}$.},
author = {Guediri, Mohammed, Bin-Asfour, Mona},
journal = {Archivum Mathematicum},
keywords = {2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness; 2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness},
language = {eng},
number = {3},
pages = {171-192},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups},
url = {http://eudml.org/doc/261970},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Guediri, Mohammed
AU - Bin-Asfour, Mona
TI - Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 3
SP - 171
EP - 192
AB - The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if $\left\langle \, ,\right\rangle $ is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group $N$, then the restriction of $\left\langle \, ,\right\rangle $ to the center of the Lie algebra of $N$ is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group $H_{2n+1}$ can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if $n=1$. We also show that the free 2-step nilpotent Lie group on $m$ generators $N_{m,2}$ admits a Ricci-flat left-invariant Lorentzian metric if and only if $m=2$ or $m=3$, and we determine all Ricci-flat left-invariant Lorentzian metrics on the free $2$-step nilpotent Lie group on $3$ generators $N_{3,2}$.
LA - eng
KW - 2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness; 2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness
UR - http://eudml.org/doc/261970
ER -
References
top- Alekseevskii, D., Kimelfeld, B., 10.1007/BF01075445, Funct. Anal. Appl. 9 (1975), 97–102. (1975) MR0402650DOI10.1007/BF01075445
- Asfour, M., Curvatures of left-invariant Lorentzian metrics on solvable Lie groups, Ph.D. thesis, in preparation.
- Aubert, A., Medina, A., 10.2748/tmj/1113247126, Tôhoku Math. J. (2) 55 (2003), no. 4, 487–506. (2003) Zbl1058.53055MR2017221DOI10.2748/tmj/1113247126
- Bérard-Bergery, L., Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes, Ann. Sci. École Norm. Sup. (4) 11 (1978), 543–576. (1978) Zbl0426.53038MR0533067
- Boucetta, M., Ricci flat left invariant pseudo-Riemannian metrics on 2-step nilpotent Lie groups, arXiv:0910.2563v1[math.DG], 2009. (2009)
- Boucetta, M., Lebzioui, H., Nonunimodular Lorentzian flat Lie algebras, arXiv:1401.0950v1 [math.DG], 2014. (2014)
- Cordero, L., Parker, P., Pseudo-Riemannian 2-step nilpotent Lie group, arXiv:math/9905188 [math.DG], 1999. (1999)
- Eberlein, P., Geometry of 2-step nilpotent groups with a left-invariant metric, Ann. Sci. École Norm. Sup. (4) 27 (1994), 611–660. (1994) Zbl0820.53047MR1296558
- Eberlein, P., 10.1090/conm/332/05929, Contemp. Math. 332 (2003), 37–72. (2003) Zbl1045.17003MR2016090DOI10.1090/conm/332/05929
- Eberlein, P., Geometry of 2-step nilpotent Lie groups, Modern Dynamical Systems, Cambridge University Press, 2004, pp. 67–101. (2004) Zbl1154.22009MR2090766
- Grunewald, F., Margulis, G., 10.1016/0393-0440(88)90017-4, J. Geom. Phys. (1988), 493–531. (1988) Zbl0706.57022MR1075720DOI10.1016/0393-0440(88)90017-4
- Guediri, M., Sur la completude des pseudo-metriques invariantes a gauche sur les groupes de Lie nilpotents, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), 371–376. (1994) Zbl0838.53035MR1345607
- Guediri, M., 10.1023/A:1025832108196, Geom. Dedicata 100 (2003), 11–51. (2003) Zbl1037.53046MR2011112DOI10.1023/A:1025832108196
- Guediri, M., 10.1090/S0002-9947-02-03114-8, Trans. Amer. Math. Soc. 355 (2003), 775–786. (2003) Zbl1028.53045MR1932725DOI10.1090/S0002-9947-02-03114-8
- Guediri, M., 10.1016/j.difgeo.2004.05.003, Differential Geom. Appl. 21 (2004), 283–295. (2004) Zbl1085.53062MR2091365DOI10.1016/j.difgeo.2004.05.003
- Kaplan, A., 10.1090/S0002-9947-1980-0554324-X, Trans. Amer. Math. Soc. 258 (1980), 147–153. (1980) Zbl0393.35015MR0554324DOI10.1090/S0002-9947-1980-0554324-X
- Kaplan, A., 10.1007/BF00147615, Geom. Dedicata 11 (1981), 127–136. (1981) Zbl0495.53046MR0621376DOI10.1007/BF00147615
- Kaplan, A., 10.1112/blms/15.1.35, Bull. Lond. Math. Soc. 15 (1983), 35–42. (1983) Zbl0521.53048MR0686346DOI10.1112/blms/15.1.35
- Milnor, J., 10.1016/S0001-8708(76)80002-3, Adv. Math. 21 (1976), 293–329. (1976) Zbl0341.53030MR0425012DOI10.1016/S0001-8708(76)80002-3
- Nomizu, K., Left-invariant Lorentz metrics on Lie groups, Osaka J. Math. 16 (1979), 143–150. (1979) Zbl0397.53047MR0527022
- O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983. (1983) MR0719023
- Ovando, G., Free nilpotent Lie algebras admitting ad-invariant metrics, arXiv:1104.4773v2 [math.RA], 2011. (2011)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.