Geometry of 2 -step nilpotent groups with a left invariant metric

Patrick Eberlein

Annales scientifiques de l'École Normale Supérieure (1994)

  • Volume: 27, Issue: 5, page 611-660
  • ISSN: 0012-9593

How to cite

top

Eberlein, Patrick. "Geometry of $2$-step nilpotent groups with a left invariant metric." Annales scientifiques de l'École Normale Supérieure 27.5 (1994): 611-660. <http://eudml.org/doc/82371>.

@article{Eberlein1994,
author = {Eberlein, Patrick},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {2-step nilpotent Lie groups; 2-step compact nilmanifolds; closed geodesics; maximal length spectrum},
language = {eng},
number = {5},
pages = {611-660},
publisher = {Elsevier},
title = {Geometry of $2$-step nilpotent groups with a left invariant metric},
url = {http://eudml.org/doc/82371},
volume = {27},
year = {1994},
}

TY - JOUR
AU - Eberlein, Patrick
TI - Geometry of $2$-step nilpotent groups with a left invariant metric
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1994
PB - Elsevier
VL - 27
IS - 5
SP - 611
EP - 660
LA - eng
KW - 2-step nilpotent Lie groups; 2-step compact nilmanifolds; closed geodesics; maximal length spectrum
UR - http://eudml.org/doc/82371
ER -

References

top
  1. [A] V. ARNOLD, Mathematical Methods of classical Mechanics (Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, 1980). Zbl0386.70001
  2. [Ba] W. BALLMANN, personal communication. 
  3. [BG] R. BROOKS and C. GORDON, Isospectral Famillies of Conformally Equivalent Riemannian Metrics (Bull. Amer. Math. Soc., Vol. 23, 1990, pp. 433-436). Zbl0722.58045MR91a:58188
  4. [BGM] M. BERGER, P. GAUDUCHON and E. MAZET, Le spectre d'une variété Riemannienne (Springer Lecture Notes, Vol. 194, New York, 1971). Zbl0223.53034MR43 #8025
  5. [CDKR] M. COWLING, A. DOOLEY, A. KORANYI and F. RICCI, H-type Groups and Iwasawa Decompositions (Advances in Math., Vol. 87, 1991, pp. 1-41). Zbl0761.22010MR92e:22017
  6. [CE] J. CHEEGER and D. EBIN, Comparison Theorems in Riemannian geometry, North-Holland, Amsterdam, 1975. Zbl0309.53035MR56 #16538
  7. [D1] D. DE TURCK, Audible and Inaudible Geometric Properties (Proc. of Conference on Differential Geometry and Topology, Rendiconti Sem. della Facolta Sci. dell' Univ. di Cagliari, 58, 1988-Supplement, pp. 1-26). MR92i:58197
  8. [D2] D. DE TURCK, The Geometry of Isospectral Deformations (to appear in Proc. Sympos. Pure Math., Summer Geomety Institute, July 1990). 
  9. [DG1] D. DE TURCK and C. GORDON, Isospectral Deformations I : Riemannian Structures on 2-step Nilspaces (Comm. Pure and Applied Math., Vol. 40, 1987, pp. 367-387). Zbl0649.53025MR88m:58186
  10. [DG2] D. DE TURCK and C. GORDON, Isospectral Deformations II : Trace Formulas, Metrics and Potentials (Comm. Pure and Applied Math., Vol. 42, 1989, pp. 1067-1095). Zbl0709.53030MR91e:58197
  11. [DG3] D. DE TURCK and C. GORDON, Isospectral Metrics and Finite Riemannian Coverings (Contemp. Math., Vol. 64, 1987, pp. 79-92). Zbl0646.58030MR88d:58124
  12. [DGGW1] D. DE TURCK, H. GLUCK, C. GORDON and D. WEBB, You Cannot Hear the Mass of a Homology Class (Comment. Math. Helvetici, Vol. 64, 1989, pp. 589-617). Zbl0694.53037MR90k:58233
  13. [DGGW2] D. DE TURCK, H. GLUCK, C. GORDON and D. WEBB, How Can a Drum Change Shape While Sounding the Same ?, in Differential Geometry : Symposium in Honor of Manfredo do Carmo, ed. B. Lawson and K. Tenenblatt (Pitman Surveys in Pure and Applied Math., Vol. 52, 1991, pp. 111-122). Zbl0728.58039MR93f:58236
  14. [DGGW3] D. DE TURCK, H. GLUCK, C. GORDON and D. WEBB, How Can a Drum Change Shape While Sounding the Same ?, Part 2, in Mechanics, Analysis and Geometry, 200 Years After Lagrange, ed. M. Francaviglia, Elsevier Press, 1991, pp. 335-358. Zbl0728.58040MR93f:58237
  15. [DGGW4] D. DE TURCK, H. GLUCK, C. GORDON and D. WEBB, The Inaudible Geometry of Nilmanifolds (Invent. Math., Vol. 111, 1993, pp. 271-284). Zbl0779.53026MR93k:58222
  16. [DGGW5] D. DE TURCK, H. GLUCK, C. GORDON and D. WEBB, Conformal Isospectral Deformations (Indiana Univ. Math. Jour., Vol. 41, 1992, pp. 99-107). Zbl0742.58055MR93c:58218
  17. [E1] P. EBERLEIN, Geometry of 2-step Nilpotent Groups with a Left Invariant Metric, II (Trans. Amer. Math. Soc., Vol. 343, 1994, pp. 805-828). Zbl0830.53039MR95b:53061
  18. [E2] P. EBERLEIN, Geometry of Nonpositively Curved Manifolds lecture notes, to appear, in Univ. Chicago Press. 
  19. [G1] C. GORDON, The Laplace Spectra Versus the Length Spectral of Riemannian Manifolds (Contemp. Math., Vol. 51, 1986, pp. 63-80). Zbl0591.53042MR87i:58170
  20. [G2] C. GORDON, Riemannian Manifolds Isospectral on Functions but not on 1-forms (J. Diff. Geom., Vol. 24, 1986, pp. 79-96). Zbl0585.53036MR87m:58174
  21. [G3] C. GORDON, personal communication. 
  22. [GW1] C. GORDON and E. WILSON, Isospectral Deformations of Compact Solvmanifolds (J. Diff. Geom., Vol. 19, 1984, pp. 241-256). Zbl0523.58043MR85j:58143
  23. [GW2] C. GORDON and E. WILSON, The Spectrum of the Laplacian on Riemannian Heisenberg manifolds (Michigan Math. Jour., Vol. 33, 1986, pp. 253-271). Zbl0599.53038MR87k:58275
  24. [Hei] E. HEINTZE, On Homogeneous Manifolds of Negative Curvature, (Math. Annalen, Vol. 211, 1974, pp. 23-34). Zbl0273.53042MR50 #5695
  25. [Hel] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962. Zbl0111.18101MR26 #2986
  26. [K1] A. KAPLAN, Riemannian Nilmanifolds Attached to Clifford Modules, (Geom. Dedicata, Vol. 11, 1981, pp. 127-136). Zbl0495.53046MR82h:22008
  27. [K2] A. KAPLAN, On the Geometry of the Groups of Heisenberg Type (Bull. London Math. Soc., Vol. 15, 1983, pp. 35-42). Zbl0521.53048MR84h:53063
  28. [Ka] F. KARPELEVIC, The Geometry of Geodesics and the Eigenfunctions of the Beltrami-Laplace Operator on Symmetric Spaces (Trans. Moscow Math. Soc., Tome 14, 1965, AMS Translation, pp. 51-199). Zbl0164.22202MR37 #6876
  29. [Ko] A. KORANYI, Geometric Properties of Heisenberg Type Groups, (Advances in Math., Vol. 56, 1985, pp. 28-38). Zbl0589.53053MR86h:53050
  30. [Ma] M. MAST, Closed Geodesics in 2-step Nilmanifolds, dissertation, Univ. of N. Carolina, 1992. 
  31. [Mi] J. MILNOR, Curvatures of Left Invariant Metrics on Lie Groups, (Advances in Math., Vol. 21, 1976, pp. 293-329). Zbl0341.53030MR54 #12970
  32. [PS] R. PALAIS and T. STEWART, Torus Bundles Over a Torus (Proc. Amer. Math. Soc., Vol. 12, 1961, pp. 26-29). Zbl0102.38702MR23 #A963
  33. [R] M. S. RAGHUNATHAN, Discrete Subgroups of Lie Groups, Springer, New York, 1972. Zbl0254.22005MR58 #22394a
  34. [St] N. STEENROD, Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951. Zbl0054.07103MR12,522b
  35. [Wi] E. WILSON, Isometry Groups on Homogeneous Nilmanifolds (Geom. Dedicata, Vol. 12, 1982, pp. 337-346). Zbl0489.53045MR84a:53048
  36. [Wo1] J. WOLF, Curvature in Nilpotent Lie Groups (Proc. Amer. Math. Soc., Vol. 15, 1964, pp. 271-274). Zbl0134.17905MR28 #5405
  37. [Wo2] J. WOLF, On locally Symmetric Spaces of Nonnegative Curvature and Certain Other Locally Symmetric Spaces (Comm. Math. Helv., Vol. 37, 1963, p. 265-295, plus typewritten erratum). Zbl0113.37101

Citations in EuDML Documents

top
  1. Hamid-Reza Fanaï, Rigidité du flot géodésique de certaines nilvariétés de rang deux
  2. Carolyn S. Gordon, Yiping Mao, Dorothee Schueth, Symplectic rigidity of geodesic flows on two-step nilmanifolds
  3. Mohammed Guediri, Mona Bin-Asfour, Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups
  4. Naceurdine Bensalem, Fernand Pelletier, Some geometrical properties of infinite-dimensional bilinear controlled systems
  5. Carolyn S. Gordon, Ruth Gornet, Dorothee Schueth, David L. Webb, Edward N. Wilson, Isospectral deformations of closed riemannian manifolds with different scalar curvature
  6. Hamid-Reza Fanaï, Atefeh Hasan-Zadeh, An application of Lie groupoids to a rigidity problem of 2-step nilmanifolds
  7. Ruth Gornet, Maura B. Mast, The length spectrum of riemannian two-step nilmanifolds

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.