Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 159-171
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCheung, Ka Luen, and Ho, Kwok-Pun. "Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent." Czechoslovak Mathematical Journal 64.1 (2014): 159-171. <http://eudml.org/doc/261983>.
@article{Cheung2014,
abstract = {The family of block spaces with variable exponents is introduced. We obtain some fundamental properties of the family of block spaces with variable exponents. They are Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents. Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey space with variable exponents. The main result of this paper is on the boundedness of the Hardy-Littlewood maximal operator on the block space with variable exponents. We find that the Hardy-Littlewood maximal operator is bounded on the block space with variable exponents whenever the Hardy-Littlewood maximal operator is bounded on the corresponding Lebesgue space with variable exponents.},
author = {Cheung, Ka Luen, Ho, Kwok-Pun},
journal = {Czechoslovak Mathematical Journal},
keywords = {block space; variable exponent analysis; Hardy-Littlewood maximal operator; block space; variable exponent analysis; Hardy-Littlewood maximal operator},
language = {eng},
number = {1},
pages = {159-171},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent},
url = {http://eudml.org/doc/261983},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Cheung, Ka Luen
AU - Ho, Kwok-Pun
TI - Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 159
EP - 171
AB - The family of block spaces with variable exponents is introduced. We obtain some fundamental properties of the family of block spaces with variable exponents. They are Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents. Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey space with variable exponents. The main result of this paper is on the boundedness of the Hardy-Littlewood maximal operator on the block space with variable exponents. We find that the Hardy-Littlewood maximal operator is bounded on the block space with variable exponents whenever the Hardy-Littlewood maximal operator is bounded on the corresponding Lebesgue space with variable exponents.
LA - eng
KW - block space; variable exponent analysis; Hardy-Littlewood maximal operator; block space; variable exponent analysis; Hardy-Littlewood maximal operator
UR - http://eudml.org/doc/261983
ER -
References
top- Bennett, C., Sharpley, R., Interpolation of Operators, Pure and Applied Mathematics vol. 129 Academic Press, Boston (1988). (1988) Zbl0647.46057MR0928802
- Blasco, O., Ruiz, A., Vega, L., Non interpolation in Morrey-Campanato and block spaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 31-40. (1999) Zbl0955.46013MR1679077
- Chiarenza, F., Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. (1987) Zbl0717.42023MR0985999
- Cruz-Uribe, D., Diening, L., Fiorenza, A., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital. 2 (2009), 151-173. (2009) Zbl1207.42011MR2493649
- Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
- Cruz-Uribe, D., Fiorenza, A., Neugebauer, C., The maximal function on variable spaces, Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. (2003) MR1976842
- Diening, L., 10.1016/j.bulsci.2003.10.003, Bull. Sci. Math. 129 (2005), 657-700. (2005) Zbl1096.46013MR2166733DOI10.1016/j.bulsci.2003.10.003
- Diening, L., Maximal function on generalized Lebesgue spaces , Math. Inequal. Appl. 7 (2004), 245-253. (2004) MR2057643
- Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T., Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn., Math. 34 (2009), 503-522. (2009) MR2553809
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
- Hästö, P. A., 10.4310/MRL.2009.v16.n2.a5, Math. Res. Lett. 16 (2009), 263-278. (2009) Zbl1184.46033MR2496743DOI10.4310/MRL.2009.v16.n2.a5
- Ho, K.-P., Atomic decompositions of Hardy-Morrey spaces with variable exponents, Ann. Acad. Sci. Fenn., Math (to appear).
- Ho, K.-P., 10.14492/hokmj/1362406643, Hokkaido Math. J. 42 (2013), 131-157. (2013) Zbl1269.42010MR3076303DOI10.14492/hokmj/1362406643
- Ho, K.-P., 10.32917/hmj/1314204559, Hiroshima Math. J. 41 (2011), 153-165. (2011) Zbl1227.42024MR2849152DOI10.32917/hmj/1314204559
- Ho, K.-P., Generalized Boyd's indices and applications, Analysis (Munich) 32 (2012), 97-106. (2012) Zbl1287.42014MR3043715
- Ho, K.-P., 10.7146/math.scand.a-15161, Math. Scand. 108 (2011), 77-102. (2011) Zbl1263.42021MR2780808DOI10.7146/math.scand.a-15161
- Ho, K.-P., 10.5186/aasfm.2012.3746, Ann. Acad. Sci. Fenn., Math. 37 (2012), 375-406. (2012) Zbl1261.42016MR2987074DOI10.5186/aasfm.2012.3746
- Kokilashvili, V., Meskhi, A., Boundedness of maximal and singular operators in Morrey spaces with variable exponent, Armen. J. Math. 1 (2008), 18-28. (2008) Zbl1281.42012MR2436241
- Kováčik, O., Rákosník, J., On spaces and , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
- Lerner, A. K., 10.1090/S0002-9947-10-05066-X, Trans. Am. Math. Soc. 362 (2010), 4229-4242. (2010) Zbl1208.42008MR2608404DOI10.1090/S0002-9947-10-05066-X
- Lerner, A. K., 10.1007/s00209-005-0818-5, Math. Z. 251 (2005), 509-521. (2005) Zbl1092.42009MR2190341DOI10.1007/s00209-005-0818-5
- Meyer, Y., Taibleson, M. H., Weiss, G., 10.1512/iumj.1985.34.34028, Indiana Univ. Math. J. 34 (1985), 493-515. (1985) MR0794574DOI10.1512/iumj.1985.34.34028
- Nekvinda, A., 10.1155/2007/294367, J. Funct. Spaces Appl. 5 (2007), 49-88. (2007) MR2296013DOI10.1155/2007/294367
- Nekvinda, A., Hardy-Littlewood maximal operator on , Math. Inequal. Appl. 7 (2004), 255-265. (2004) MR2057644
- Nekvinda, A., 10.1016/j.jmaa.2007.04.047, J. Math. Anal. Appl. 337 (2008), 1345-1365. (2008) Zbl1260.42010MR2386383DOI10.1016/j.jmaa.2007.04.047
- Soria, F., 10.1512/iumj.1985.34.34027, Indiana Univ. Math. J. 34 (1985), 463-492. (1985) Zbl0573.42015MR0794573DOI10.1512/iumj.1985.34.34027
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.