Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent

Ka Luen Cheung; Kwok-Pun Ho

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 1, page 159-171
  • ISSN: 0011-4642

Abstract

top
The family of block spaces with variable exponents is introduced. We obtain some fundamental properties of the family of block spaces with variable exponents. They are Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents. Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey space with variable exponents. The main result of this paper is on the boundedness of the Hardy-Littlewood maximal operator on the block space with variable exponents. We find that the Hardy-Littlewood maximal operator is bounded on the block space with variable exponents whenever the Hardy-Littlewood maximal operator is bounded on the corresponding Lebesgue space with variable exponents.

How to cite

top

Cheung, Ka Luen, and Ho, Kwok-Pun. "Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent." Czechoslovak Mathematical Journal 64.1 (2014): 159-171. <http://eudml.org/doc/261983>.

@article{Cheung2014,
abstract = {The family of block spaces with variable exponents is introduced. We obtain some fundamental properties of the family of block spaces with variable exponents. They are Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents. Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey space with variable exponents. The main result of this paper is on the boundedness of the Hardy-Littlewood maximal operator on the block space with variable exponents. We find that the Hardy-Littlewood maximal operator is bounded on the block space with variable exponents whenever the Hardy-Littlewood maximal operator is bounded on the corresponding Lebesgue space with variable exponents.},
author = {Cheung, Ka Luen, Ho, Kwok-Pun},
journal = {Czechoslovak Mathematical Journal},
keywords = {block space; variable exponent analysis; Hardy-Littlewood maximal operator; block space; variable exponent analysis; Hardy-Littlewood maximal operator},
language = {eng},
number = {1},
pages = {159-171},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent},
url = {http://eudml.org/doc/261983},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Cheung, Ka Luen
AU - Ho, Kwok-Pun
TI - Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 159
EP - 171
AB - The family of block spaces with variable exponents is introduced. We obtain some fundamental properties of the family of block spaces with variable exponents. They are Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents. Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey space with variable exponents. The main result of this paper is on the boundedness of the Hardy-Littlewood maximal operator on the block space with variable exponents. We find that the Hardy-Littlewood maximal operator is bounded on the block space with variable exponents whenever the Hardy-Littlewood maximal operator is bounded on the corresponding Lebesgue space with variable exponents.
LA - eng
KW - block space; variable exponent analysis; Hardy-Littlewood maximal operator; block space; variable exponent analysis; Hardy-Littlewood maximal operator
UR - http://eudml.org/doc/261983
ER -

References

top
  1. Bennett, C., Sharpley, R., Interpolation of Operators, Pure and Applied Mathematics vol. 129 Academic Press, Boston (1988). (1988) Zbl0647.46057MR0928802
  2. Blasco, O., Ruiz, A., Vega, L., Non interpolation in Morrey-Campanato and block spaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 31-40. (1999) Zbl0955.46013MR1679077
  3. Chiarenza, F., Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. (1987) Zbl0717.42023MR0985999
  4. Cruz-Uribe, D., Diening, L., Fiorenza, A., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital. 2 (2009), 151-173. (2009) Zbl1207.42011MR2493649
  5. Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable L p spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
  6. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C., The maximal function on variable L p spaces, Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. (2003) MR1976842
  7. Diening, L., 10.1016/j.bulsci.2003.10.003, Bull. Sci. Math. 129 (2005), 657-700. (2005) Zbl1096.46013MR2166733DOI10.1016/j.bulsci.2003.10.003
  8. Diening, L., Maximal function on generalized Lebesgue spaces L p ( · ) , Math. Inequal. Appl. 7 (2004), 245-253. (2004) MR2057643
  9. Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T., Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn., Math. 34 (2009), 503-522. (2009) MR2553809
  10. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
  11. Hästö, P. A., 10.4310/MRL.2009.v16.n2.a5, Math. Res. Lett. 16 (2009), 263-278. (2009) Zbl1184.46033MR2496743DOI10.4310/MRL.2009.v16.n2.a5
  12. Ho, K.-P., Atomic decompositions of Hardy-Morrey spaces with variable exponents, Ann. Acad. Sci. Fenn., Math (to appear). 
  13. Ho, K.-P., 10.14492/hokmj/1362406643, Hokkaido Math. J. 42 (2013), 131-157. (2013) Zbl1269.42010MR3076303DOI10.14492/hokmj/1362406643
  14. Ho, K.-P., 10.32917/hmj/1314204559, Hiroshima Math. J. 41 (2011), 153-165. (2011) Zbl1227.42024MR2849152DOI10.32917/hmj/1314204559
  15. Ho, K.-P., Generalized Boyd's indices and applications, Analysis (Munich) 32 (2012), 97-106. (2012) Zbl1287.42014MR3043715
  16. Ho, K.-P., 10.7146/math.scand.a-15161, Math. Scand. 108 (2011), 77-102. (2011) Zbl1263.42021MR2780808DOI10.7146/math.scand.a-15161
  17. Ho, K.-P., 10.5186/aasfm.2012.3746, Ann. Acad. Sci. Fenn., Math. 37 (2012), 375-406. (2012) Zbl1261.42016MR2987074DOI10.5186/aasfm.2012.3746
  18. Kokilashvili, V., Meskhi, A., Boundedness of maximal and singular operators in Morrey spaces with variable exponent, Armen. J. Math. 1 (2008), 18-28. (2008) Zbl1281.42012MR2436241
  19. Kováčik, O., Rákosník, J., On spaces L p ( x ) and W k , p ( x ) , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
  20. Lerner, A. K., 10.1090/S0002-9947-10-05066-X, Trans. Am. Math. Soc. 362 (2010), 4229-4242. (2010) Zbl1208.42008MR2608404DOI10.1090/S0002-9947-10-05066-X
  21. Lerner, A. K., 10.1007/s00209-005-0818-5, Math. Z. 251 (2005), 509-521. (2005) Zbl1092.42009MR2190341DOI10.1007/s00209-005-0818-5
  22. Meyer, Y., Taibleson, M. H., Weiss, G., 10.1512/iumj.1985.34.34028, Indiana Univ. Math. J. 34 (1985), 493-515. (1985) MR0794574DOI10.1512/iumj.1985.34.34028
  23. Nekvinda, A., 10.1155/2007/294367, J. Funct. Spaces Appl. 5 (2007), 49-88. (2007) MR2296013DOI10.1155/2007/294367
  24. Nekvinda, A., Hardy-Littlewood maximal operator on L p ( x ) ( n ) , Math. Inequal. Appl. 7 (2004), 255-265. (2004) MR2057644
  25. Nekvinda, A., 10.1016/j.jmaa.2007.04.047, J. Math. Anal. Appl. 337 (2008), 1345-1365. (2008) Zbl1260.42010MR2386383DOI10.1016/j.jmaa.2007.04.047
  26. Soria, F., 10.1512/iumj.1985.34.34027, Indiana Univ. Math. J. 34 (1985), 463-492. (1985) Zbl0573.42015MR0794573DOI10.1512/iumj.1985.34.34027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.