Atomic decomposition of predictable martingale Hardy space with variable exponents

Zhiwei Hao

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 4, page 1033-1045
  • ISSN: 0011-4642

Abstract

top
This paper is mainly devoted to establishing an atomic decomposition of a predictable martingale Hardy space with variable exponents defined on probability spaces. More precisely, let ( Ω , , ) be a probability space and p ( · ) : Ω ( 0 , ) be a -measurable function such that 0 < inf x Ω p ( x ) sup x Ω p ( x ) < . It is proved that a predictable martingale Hardy space 𝒫 p ( · ) has an atomic decomposition by some key observations and new techniques. As an application, we obtain the boundedness of fractional integrals on the predictable martingale Hardy space with variable exponents when the stochastic basis is regular.

How to cite

top

Hao, Zhiwei. "Atomic decomposition of predictable martingale Hardy space with variable exponents." Czechoslovak Mathematical Journal 65.4 (2015): 1033-1045. <http://eudml.org/doc/276255>.

@article{Hao2015,
abstract = {This paper is mainly devoted to establishing an atomic decomposition of a predictable martingale Hardy space with variable exponents defined on probability spaces. More precisely, let $(\Omega , \mathcal \{F\}, \mathbb \{P\})$ be a probability space and $p(\cdot )\colon \Omega \rightarrow (0,\infty )$ be a $\mathcal \{F\}$-measurable function such that $0<\inf \nolimits _\{x\in \Omega \}p(x)\le \sup \nolimits _\{x\in \Omega \}p(x)<\infty $. It is proved that a predictable martingale Hardy space $\mathcal \{P\}_\{p(\cdot )\}$ has an atomic decomposition by some key observations and new techniques. As an application, we obtain the boundedness of fractional integrals on the predictable martingale Hardy space with variable exponents when the stochastic basis is regular.},
author = {Hao, Zhiwei},
journal = {Czechoslovak Mathematical Journal},
keywords = {variable exponent; atomic decomposition; martingale Hardy space; fractional integral},
language = {eng},
number = {4},
pages = {1033-1045},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Atomic decomposition of predictable martingale Hardy space with variable exponents},
url = {http://eudml.org/doc/276255},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Hao, Zhiwei
TI - Atomic decomposition of predictable martingale Hardy space with variable exponents
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 1033
EP - 1045
AB - This paper is mainly devoted to establishing an atomic decomposition of a predictable martingale Hardy space with variable exponents defined on probability spaces. More precisely, let $(\Omega , \mathcal {F}, \mathbb {P})$ be a probability space and $p(\cdot )\colon \Omega \rightarrow (0,\infty )$ be a $\mathcal {F}$-measurable function such that $0<\inf \nolimits _{x\in \Omega }p(x)\le \sup \nolimits _{x\in \Omega }p(x)<\infty $. It is proved that a predictable martingale Hardy space $\mathcal {P}_{p(\cdot )}$ has an atomic decomposition by some key observations and new techniques. As an application, we obtain the boundedness of fractional integrals on the predictable martingale Hardy space with variable exponents when the stochastic basis is regular.
LA - eng
KW - variable exponent; atomic decomposition; martingale Hardy space; fractional integral
UR - http://eudml.org/doc/276255
ER -

References

top
  1. Chao, J.-A., Ombe, H., Commutators on dyadic martingales, Proc. Japan Acad., Ser. A 61 (1985), 35-38. (1985) Zbl0596.47024MR0798032
  2. Cheung, K. L., Ho, K.-P., 10.1007/s10587-014-0091-z, Czech. Math. J. 64 (2014), 159-171. (2014) MR3247452DOI10.1007/s10587-014-0091-z
  3. Cruz-Uribe, D. V., Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis Birkhäuser, New York (2013). (2013) Zbl1268.46002MR3026953
  4. Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable L p spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
  5. Cruz-Uribe, D., Wang, L.-A. D., 10.1512/iumj.2014.63.5232, Indiana Univ. Math. J. 63 (2014), 447-493. (2014) Zbl1311.42053MR3233216DOI10.1512/iumj.2014.63.5232
  6. Diening, L., Maximal function on generalized Lebesgue spaces L p ( · ) , Math. Inequal. Appl. 7 (2004), 245-253. (2004) Zbl1071.42014MR2057643
  7. Diening, L., H{ä}stö, P., Roudenko, S., 10.1016/j.jfa.2009.01.017, J. Funct. Anal. 256 (2009), 1731-1768. (2009) Zbl1179.46028MR2498558DOI10.1016/j.jfa.2009.01.017
  8. Fan, X., Zhao, D., On the spaces L p ( x ) ( Ω ) and W m , p ( x ) ( Ω ) , J. Math. Anal. Appl. 263 (2001), 424-446. (2001) Zbl1028.46041MR1866056
  9. Hao, Z., Jiao, Y., Fractional integral on martingale Hardy spaces with variable exponents, Fract. Calc. Appl. Anal. 18 (2015), 1128-1145. (2015) MR3417085
  10. Ho, K.-P., 10.11650/tjm.18.2014.3618, Taiwanese J. Math. 18 (2014), 1107-1118. (2014) MR3245432DOI10.11650/tjm.18.2014.3618
  11. Jiao, Y., Peng, L., Liu, P., 10.1155/2009/465079, J. Funct. Spaces Appl. 7 (2009), 153-166. (2009) MR2541232DOI10.1155/2009/465079
  12. Jiao, Y., Wu, L., Yang, A., Yi, R., The predual and John-Nirenberg inequalities on generalized BMO martingale spaces, (to appear) in Trans. Amer. Math. Soc (2014), arXiv:1408.4641v1 [math.FA], 20 Aug. 2014. (2014) MR3557784
  13. Jiao, Y., Xie, G., Zhou, D., 10.1093/qmath/hav003, Q. J. Math. 66 (2015), 605-623. (2015) Zbl1317.42021MR3356840DOI10.1093/qmath/hav003
  14. Kováčik, O., Rákosník, J., On spaces L p ( x ) and W k , p ( x ) , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
  15. Liu, P., Hou, Y., 10.1007/BF02872048, Sci. China, Ser. A 42 (1999), 38-47. (1999) Zbl0928.46020MR1692138DOI10.1007/BF02872048
  16. Miyamoto, T., Nakai, E., Sadasue, G., 10.1002/mana.201000109, Math. Nachr. 285 (2012), 670-686. (2012) Zbl1260.60082MR2902839DOI10.1002/mana.201000109
  17. Nakai, E., Sadasue, G., Martingale Morrey-Campanato spaces and fractional integrals, J. Funct. Spaces Appl. 2012 (2012), Article ID 673929, 29 pages. (2012) Zbl1254.46035MR2944703
  18. Nakai, E., Sawano, Y., 10.1016/j.jfa.2012.01.004, J. Funct. Anal. 262 (2012), 3665-3748. (2012) Zbl1244.42012MR2899976DOI10.1016/j.jfa.2012.01.004
  19. Ohno, T., Shimomura, T., 10.1007/s10587-014-0095-8, Czech. Math. J. 64 (2014), 209-228. (2014) MR3247456DOI10.1007/s10587-014-0095-8
  20. Orlicz, W., 10.4064/sm-3-1-200-211, Stud. Math. 3 German (1931), 200-211. (1931) Zbl0003.25203DOI10.4064/sm-3-1-200-211
  21. Sadasue, G., Fractional integrals on martingale Hardy spaces for 0 < p 1 , Mem. Osaka Kyoiku Univ., Ser. III, Nat. Sci. Appl. Sci. 60 (2011), 1-7. (2011) MR2963747
  22. Sawano, Y., 10.1007/s00020-013-2073-1, Integral Equations Oper. Theory 77 (2013), 123-148. (2013) Zbl1293.42025MR3090168DOI10.1007/s00020-013-2073-1
  23. Weisz, F., 10.1007/BFb0073448, Lecture Notes in Mathematics 1568 Springer, Berlin (1994). (1994) Zbl0796.60049MR1320508DOI10.1007/BFb0073448
  24. Wu, L., Hao, Z., Jiao, Y., John-Nirenberg inequalities with variable exponents on probability spaces, Tokyo J. Math. 38 (2) (2015). (2015) MR3448862
  25. Yi, R., Wu, L., Jiao, Y., 10.1016/j.spl.2013.12.010, Stat. Probab. Lett. 86 (2014), 68-73. (2014) Zbl1292.60051MR3162719DOI10.1016/j.spl.2013.12.010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.