Atomic decomposition of predictable martingale Hardy space with variable exponents
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 1033-1045
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHao, Zhiwei. "Atomic decomposition of predictable martingale Hardy space with variable exponents." Czechoslovak Mathematical Journal 65.4 (2015): 1033-1045. <http://eudml.org/doc/276255>.
@article{Hao2015,
abstract = {This paper is mainly devoted to establishing an atomic decomposition of a predictable martingale Hardy space with variable exponents defined on probability spaces. More precisely, let $(\Omega , \mathcal \{F\}, \mathbb \{P\})$ be a probability space and $p(\cdot )\colon \Omega \rightarrow (0,\infty )$ be a $\mathcal \{F\}$-measurable function such that $0<\inf \nolimits _\{x\in \Omega \}p(x)\le \sup \nolimits _\{x\in \Omega \}p(x)<\infty $. It is proved that a predictable martingale Hardy space $\mathcal \{P\}_\{p(\cdot )\}$ has an atomic decomposition by some key observations and new techniques. As an application, we obtain the boundedness of fractional integrals on the predictable martingale Hardy space with variable exponents when the stochastic basis is regular.},
author = {Hao, Zhiwei},
journal = {Czechoslovak Mathematical Journal},
keywords = {variable exponent; atomic decomposition; martingale Hardy space; fractional integral},
language = {eng},
number = {4},
pages = {1033-1045},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Atomic decomposition of predictable martingale Hardy space with variable exponents},
url = {http://eudml.org/doc/276255},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Hao, Zhiwei
TI - Atomic decomposition of predictable martingale Hardy space with variable exponents
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 1033
EP - 1045
AB - This paper is mainly devoted to establishing an atomic decomposition of a predictable martingale Hardy space with variable exponents defined on probability spaces. More precisely, let $(\Omega , \mathcal {F}, \mathbb {P})$ be a probability space and $p(\cdot )\colon \Omega \rightarrow (0,\infty )$ be a $\mathcal {F}$-measurable function such that $0<\inf \nolimits _{x\in \Omega }p(x)\le \sup \nolimits _{x\in \Omega }p(x)<\infty $. It is proved that a predictable martingale Hardy space $\mathcal {P}_{p(\cdot )}$ has an atomic decomposition by some key observations and new techniques. As an application, we obtain the boundedness of fractional integrals on the predictable martingale Hardy space with variable exponents when the stochastic basis is regular.
LA - eng
KW - variable exponent; atomic decomposition; martingale Hardy space; fractional integral
UR - http://eudml.org/doc/276255
ER -
References
top- Chao, J.-A., Ombe, H., Commutators on dyadic martingales, Proc. Japan Acad., Ser. A 61 (1985), 35-38. (1985) Zbl0596.47024MR0798032
- Cheung, K. L., Ho, K.-P., 10.1007/s10587-014-0091-z, Czech. Math. J. 64 (2014), 159-171. (2014) MR3247452DOI10.1007/s10587-014-0091-z
- Cruz-Uribe, D. V., Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis Birkhäuser, New York (2013). (2013) Zbl1268.46002MR3026953
- Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
- Cruz-Uribe, D., Wang, L.-A. D., 10.1512/iumj.2014.63.5232, Indiana Univ. Math. J. 63 (2014), 447-493. (2014) Zbl1311.42053MR3233216DOI10.1512/iumj.2014.63.5232
- Diening, L., Maximal function on generalized Lebesgue spaces , Math. Inequal. Appl. 7 (2004), 245-253. (2004) Zbl1071.42014MR2057643
- Diening, L., H{ä}stö, P., Roudenko, S., 10.1016/j.jfa.2009.01.017, J. Funct. Anal. 256 (2009), 1731-1768. (2009) Zbl1179.46028MR2498558DOI10.1016/j.jfa.2009.01.017
- Fan, X., Zhao, D., On the spaces and , J. Math. Anal. Appl. 263 (2001), 424-446. (2001) Zbl1028.46041MR1866056
- Hao, Z., Jiao, Y., Fractional integral on martingale Hardy spaces with variable exponents, Fract. Calc. Appl. Anal. 18 (2015), 1128-1145. (2015) MR3417085
- Ho, K.-P., 10.11650/tjm.18.2014.3618, Taiwanese J. Math. 18 (2014), 1107-1118. (2014) MR3245432DOI10.11650/tjm.18.2014.3618
- Jiao, Y., Peng, L., Liu, P., 10.1155/2009/465079, J. Funct. Spaces Appl. 7 (2009), 153-166. (2009) MR2541232DOI10.1155/2009/465079
- Jiao, Y., Wu, L., Yang, A., Yi, R., The predual and John-Nirenberg inequalities on generalized BMO martingale spaces, (to appear) in Trans. Amer. Math. Soc (2014), arXiv:1408.4641v1 [math.FA], 20 Aug. 2014. (2014) MR3557784
- Jiao, Y., Xie, G., Zhou, D., 10.1093/qmath/hav003, Q. J. Math. 66 (2015), 605-623. (2015) Zbl1317.42021MR3356840DOI10.1093/qmath/hav003
- Kováčik, O., Rákosník, J., On spaces and , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
- Liu, P., Hou, Y., 10.1007/BF02872048, Sci. China, Ser. A 42 (1999), 38-47. (1999) Zbl0928.46020MR1692138DOI10.1007/BF02872048
- Miyamoto, T., Nakai, E., Sadasue, G., 10.1002/mana.201000109, Math. Nachr. 285 (2012), 670-686. (2012) Zbl1260.60082MR2902839DOI10.1002/mana.201000109
- Nakai, E., Sadasue, G., Martingale Morrey-Campanato spaces and fractional integrals, J. Funct. Spaces Appl. 2012 (2012), Article ID 673929, 29 pages. (2012) Zbl1254.46035MR2944703
- Nakai, E., Sawano, Y., 10.1016/j.jfa.2012.01.004, J. Funct. Anal. 262 (2012), 3665-3748. (2012) Zbl1244.42012MR2899976DOI10.1016/j.jfa.2012.01.004
- Ohno, T., Shimomura, T., 10.1007/s10587-014-0095-8, Czech. Math. J. 64 (2014), 209-228. (2014) MR3247456DOI10.1007/s10587-014-0095-8
- Orlicz, W., 10.4064/sm-3-1-200-211, Stud. Math. 3 German (1931), 200-211. (1931) Zbl0003.25203DOI10.4064/sm-3-1-200-211
- Sadasue, G., Fractional integrals on martingale Hardy spaces for , Mem. Osaka Kyoiku Univ., Ser. III, Nat. Sci. Appl. Sci. 60 (2011), 1-7. (2011) MR2963747
- Sawano, Y., 10.1007/s00020-013-2073-1, Integral Equations Oper. Theory 77 (2013), 123-148. (2013) Zbl1293.42025MR3090168DOI10.1007/s00020-013-2073-1
- Weisz, F., 10.1007/BFb0073448, Lecture Notes in Mathematics 1568 Springer, Berlin (1994). (1994) Zbl0796.60049MR1320508DOI10.1007/BFb0073448
- Wu, L., Hao, Z., Jiao, Y., John-Nirenberg inequalities with variable exponents on probability spaces, Tokyo J. Math. 38 (2) (2015). (2015) MR3448862
- Yi, R., Wu, L., Jiao, Y., 10.1016/j.spl.2013.12.010, Stat. Probab. Lett. 86 (2014), 68-73. (2014) Zbl1292.60051MR3162719DOI10.1016/j.spl.2013.12.010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.