Operads of decorated trees and their duals

Vsevolod Yu. Gubarev; Pavel S. Kolesnikov

Commentationes Mathematicae Universitatis Carolinae (2014)

  • Volume: 55, Issue: 4, page 421-445
  • ISSN: 0010-2628

Abstract

top
This is an extended version of a talk presented by the second author on the Third Mile High Conference on Nonassociative Mathematics (August 2013, Denver, CO). The purpose of this paper is twofold. First, we would like to review the technique developed in a series of papers for various classes of di-algebras and show how the same ideas work for tri-algebras. Second, we present a general approach to the definition of pre- and post-algebras which turns out to be equivalent to the construction of dendriform splitting. However, our approach is more algebraic and thus provides simpler way to prove various properties of pre- and post-algebras in general.

How to cite

top

Gubarev, Vsevolod Yu., and Kolesnikov, Pavel S.. "Operads of decorated trees and their duals." Commentationes Mathematicae Universitatis Carolinae 55.4 (2014): 421-445. <http://eudml.org/doc/261995>.

@article{Gubarev2014,
abstract = {This is an extended version of a talk presented by the second author on the Third Mile High Conference on Nonassociative Mathematics (August 2013, Denver, CO). The purpose of this paper is twofold. First, we would like to review the technique developed in a series of papers for various classes of di-algebras and show how the same ideas work for tri-algebras. Second, we present a general approach to the definition of pre- and post-algebras which turns out to be equivalent to the construction of dendriform splitting. However, our approach is more algebraic and thus provides simpler way to prove various properties of pre- and post-algebras in general.},
author = {Gubarev, Vsevolod Yu., Kolesnikov, Pavel S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra; Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra},
language = {eng},
number = {4},
pages = {421-445},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Operads of decorated trees and their duals},
url = {http://eudml.org/doc/261995},
volume = {55},
year = {2014},
}

TY - JOUR
AU - Gubarev, Vsevolod Yu.
AU - Kolesnikov, Pavel S.
TI - Operads of decorated trees and their duals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 4
SP - 421
EP - 445
AB - This is an extended version of a talk presented by the second author on the Third Mile High Conference on Nonassociative Mathematics (August 2013, Denver, CO). The purpose of this paper is twofold. First, we would like to review the technique developed in a series of papers for various classes of di-algebras and show how the same ideas work for tri-algebras. Second, we present a general approach to the definition of pre- and post-algebras which turns out to be equivalent to the construction of dendriform splitting. However, our approach is more algebraic and thus provides simpler way to prove various properties of pre- and post-algebras in general.
LA - eng
KW - Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra; Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra
UR - http://eudml.org/doc/261995
ER -

References

top
  1. Aguiar M., 10.1023/A:1010818119040, Lett. Math. Phys. 54 (2000), 263–277. Zbl1032.17038MR1846958DOI10.1023/A:1010818119040
  2. Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota–Baxter operators, Int. Math. Res. Notes 3 (2013), 485–524. MR3021790
  3. Bakalov B., D'Andrea A., Kac V.G., 10.1006/aima.2001.1993, Adv. Math. 162 (2001), no. 1, 1–140. Zbl1001.16021MR1849687DOI10.1006/aima.2001.1993
  4. Bremner M.R., 10.1080/00927870903468375, Comm. Algebra 38 (2010), 4695–4704. Zbl1241.17001MR2805138DOI10.1080/00927870903468375
  5. Bremner M.R., Felipe R., Sánchez-Ortega J., 10.1016/j.camwa.2011.12.008, Comput. Math. Appl. 63 (2012), 1039-1055. Zbl1247.17004MR2892747DOI10.1016/j.camwa.2011.12.008
  6. Bremner M.R., Madariaga S., Dendriform analogues of Lie and Jordan triple systems, Comm. Algebra, to appear, arXiv:1305.1389 [math.RA]. MR3210406
  7. Bremner M.R., Peresi L.A., Sánchez-Ortega J., 10.1080/03081087.2011.651721, Linear Multilinear Algebra 60 (2012), 1125–1141. Zbl1280.17030MR2983755DOI10.1080/03081087.2011.651721
  8. Bremner M.R., Sánchez-Ortega J., 10.1142/S021919971350051X, Commun. Contemp. Math. 16 (2014), 1350051 (19 pages); DOI: 10.1142/S021919971350051X. MR3189605DOI10.1142/S021919971350051X
  9. Chapoton F., 10.1007/3-540-45328-8_4, in: Loday J.-L., Frabetti A., Chapoton F., Goichot F. (Eds), Dialgebras and related operads, Lectures Notes in Mathematics, 1763, Springer, Berlin, 2001, pp. 105–110. Zbl0999.17004MR1860996DOI10.1007/3-540-45328-8_4
  10. Cohn P.M., 10.4153/CJM-1954-026-9, Canadian J. Math. 6 (1954), 253–264. Zbl0055.02704DOI10.4153/CJM-1954-026-9
  11. Dotsenko V., Khoroshkin A., 10.1007/s10688-007-0001-3, Funktsional. Anal. i Prilozhen. 41 (2007), no. 1, 1–17. MR2333979DOI10.1007/s10688-007-0001-3
  12. Giambruno A., Zaicev M., 10.1006/aima.1998.1766, Adv. Math. 140 (1998), no. 2, 145–155. Zbl0920.16012MR1658530DOI10.1006/aima.1998.1766
  13. Ginzburg V., Kapranov M., 10.1215/S0012-7094-94-07608-4, Duke Math. J. 76 (1994), no. 1, 203–272. Zbl0855.18007MR1301191DOI10.1215/S0012-7094-94-07608-4
  14. Gubarev V.Yu., Kolesnikov P.S., 10.1080/00927871003591967, Comm. Algebra 39 (2011), no. 2, 497–520. Zbl1272.17032MR2773316DOI10.1080/00927871003591967
  15. Gubarev V.Yu., Kolesnikov P.S., 10.2478/s11533-012-0138-z, Cent. Eur. J. Math. 11 (2013), no. 2, 226–245. Zbl1262.18009MR3000640DOI10.2478/s11533-012-0138-z
  16. Hou D.P., Ni X., Bai C., Pre-Jordan algebras, Math. Scand. 112 (2013), no. 1, 19–48. MR3057597
  17. Jacobson N., Structure and Representations of Jordan Algebras, American Mathematical Society, Providence, 1968. Zbl0218.17010MR0251099
  18. Kolesnikov P.S., 10.1007/s11202-008-0026-8, Sib. Math. J. 49 (2008), no. 2, 257–272. Zbl1164.17002MR2419658DOI10.1007/s11202-008-0026-8
  19. Kolesnikov P.S., Voronin V.Yu., 10.1080/03081087.2012.686108, Linear Multilinear Algebra 61 (2013), no. 3, 377–391. Zbl1273.17003MR3003431DOI10.1080/03081087.2012.686108
  20. Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. 39 (1993), 269–293. Zbl0806.55009MR1252069
  21. Loday J.-L., Dialgebras, in: Loday J.-L., Frabetti A., Chapoton F., Goichot F. (Eds), Dialgebras and related operads, Lectures Notes in Mathematics, 1763, Springer, Berlin, 2001, pp. 105–110. Zbl0999.17002MR1860994
  22. Loday J.-L., Pirashvili T., 10.1007/BF01445099, Math. Ann. 296 (1993), 139–158. Zbl0821.17022MR1213376DOI10.1007/BF01445099
  23. Loday J.-L., Ronco M., 10.1090/conm/346/06296, in: Goerss P.G., Priddy S. (Eds.), Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Contemp. Math. 346 (2004), 369–398. Zbl1065.18007MR2066507DOI10.1090/conm/346/06296
  24. Loday J.-L., Vallette B., Algebraic Operads, Gründlehren der mathematischen Wissenschaften, 346, Springer, Heidelberg, 2012. Zbl1260.18001
  25. Pei J., Bai C., Guo L., Splitting of operads and Rota–Baxter operators on operads, arXiv:1306.3046 [math.CT]. 
  26. Strohmayer H., 10.1016/j.jpaa.2008.04.009, J. Pure Appl. Algebra 212 (2008), 2522–2534. Zbl1149.18006MR2440264DOI10.1016/j.jpaa.2008.04.009
  27. Uchino K., On distributive laws in derived bracket construction and homotopy theory of derived bracket Leibniz algebras, arXiv:1110.4188v5 [math.QA]. 
  28. Vallette B., 10.1016/j.jpaa.2006.03.012, J. Pure Appl. Algebra 208 (2007), no. 2, 699–725. Zbl1109.18002MR2277706DOI10.1016/j.jpaa.2006.03.012
  29. Vallette B., Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. Reine Angew. Math. 620 (2008), 105–164. Zbl1159.18001MR2427978
  30. Velasquez R., Felipe R., 10.1080/00927870701865996, Comm. Algebra 36 (2008), no. 4, 1580–1602. Zbl1188.17022MR2410352DOI10.1080/00927870701865996
  31. Voronin V., 10.1142/S0219498811005531, J. Algebra Appl. 11 (2012), no. 2, 23 p. MR2925443DOI10.1142/S0219498811005531
  32. Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I., Rings That Are Nearly Associative, Academic Press, New York, 1982. Zbl0487.17001MR0668355

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.