Operads of decorated trees and their duals
Vsevolod Yu. Gubarev; Pavel S. Kolesnikov
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 4, page 421-445
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGubarev, Vsevolod Yu., and Kolesnikov, Pavel S.. "Operads of decorated trees and their duals." Commentationes Mathematicae Universitatis Carolinae 55.4 (2014): 421-445. <http://eudml.org/doc/261995>.
@article{Gubarev2014,
abstract = {This is an extended version of a talk presented by the second author on the Third Mile High Conference on Nonassociative Mathematics (August 2013, Denver, CO). The purpose of this paper is twofold. First, we would like to review the technique developed in a series of papers for various classes of di-algebras and show how the same ideas work for tri-algebras. Second, we present a general approach to the definition of pre- and post-algebras which turns out to be equivalent to the construction of dendriform splitting. However, our approach is more algebraic and thus provides simpler way to prove various properties of pre- and post-algebras in general.},
author = {Gubarev, Vsevolod Yu., Kolesnikov, Pavel S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra; Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra},
language = {eng},
number = {4},
pages = {421-445},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Operads of decorated trees and their duals},
url = {http://eudml.org/doc/261995},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Gubarev, Vsevolod Yu.
AU - Kolesnikov, Pavel S.
TI - Operads of decorated trees and their duals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 4
SP - 421
EP - 445
AB - This is an extended version of a talk presented by the second author on the Third Mile High Conference on Nonassociative Mathematics (August 2013, Denver, CO). The purpose of this paper is twofold. First, we would like to review the technique developed in a series of papers for various classes of di-algebras and show how the same ideas work for tri-algebras. Second, we present a general approach to the definition of pre- and post-algebras which turns out to be equivalent to the construction of dendriform splitting. However, our approach is more algebraic and thus provides simpler way to prove various properties of pre- and post-algebras in general.
LA - eng
KW - Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra; Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra
UR - http://eudml.org/doc/261995
ER -
References
top- Aguiar M., 10.1023/A:1010818119040, Lett. Math. Phys. 54 (2000), 263–277. Zbl1032.17038MR1846958DOI10.1023/A:1010818119040
- Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota–Baxter operators, Int. Math. Res. Notes 3 (2013), 485–524. MR3021790
- Bakalov B., D'Andrea A., Kac V.G., 10.1006/aima.2001.1993, Adv. Math. 162 (2001), no. 1, 1–140. Zbl1001.16021MR1849687DOI10.1006/aima.2001.1993
- Bremner M.R., 10.1080/00927870903468375, Comm. Algebra 38 (2010), 4695–4704. Zbl1241.17001MR2805138DOI10.1080/00927870903468375
- Bremner M.R., Felipe R., Sánchez-Ortega J., 10.1016/j.camwa.2011.12.008, Comput. Math. Appl. 63 (2012), 1039-1055. Zbl1247.17004MR2892747DOI10.1016/j.camwa.2011.12.008
- Bremner M.R., Madariaga S., Dendriform analogues of Lie and Jordan triple systems, Comm. Algebra, to appear, arXiv:1305.1389 [math.RA]. MR3210406
- Bremner M.R., Peresi L.A., Sánchez-Ortega J., 10.1080/03081087.2011.651721, Linear Multilinear Algebra 60 (2012), 1125–1141. Zbl1280.17030MR2983755DOI10.1080/03081087.2011.651721
- Bremner M.R., Sánchez-Ortega J., 10.1142/S021919971350051X, Commun. Contemp. Math. 16 (2014), 1350051 (19 pages); DOI: 10.1142/S021919971350051X. MR3189605DOI10.1142/S021919971350051X
- Chapoton F., 10.1007/3-540-45328-8_4, in: Loday J.-L., Frabetti A., Chapoton F., Goichot F. (Eds), Dialgebras and related operads, Lectures Notes in Mathematics, 1763, Springer, Berlin, 2001, pp. 105–110. Zbl0999.17004MR1860996DOI10.1007/3-540-45328-8_4
- Cohn P.M., 10.4153/CJM-1954-026-9, Canadian J. Math. 6 (1954), 253–264. Zbl0055.02704DOI10.4153/CJM-1954-026-9
- Dotsenko V., Khoroshkin A., 10.1007/s10688-007-0001-3, Funktsional. Anal. i Prilozhen. 41 (2007), no. 1, 1–17. MR2333979DOI10.1007/s10688-007-0001-3
- Giambruno A., Zaicev M., 10.1006/aima.1998.1766, Adv. Math. 140 (1998), no. 2, 145–155. Zbl0920.16012MR1658530DOI10.1006/aima.1998.1766
- Ginzburg V., Kapranov M., 10.1215/S0012-7094-94-07608-4, Duke Math. J. 76 (1994), no. 1, 203–272. Zbl0855.18007MR1301191DOI10.1215/S0012-7094-94-07608-4
- Gubarev V.Yu., Kolesnikov P.S., 10.1080/00927871003591967, Comm. Algebra 39 (2011), no. 2, 497–520. Zbl1272.17032MR2773316DOI10.1080/00927871003591967
- Gubarev V.Yu., Kolesnikov P.S., 10.2478/s11533-012-0138-z, Cent. Eur. J. Math. 11 (2013), no. 2, 226–245. Zbl1262.18009MR3000640DOI10.2478/s11533-012-0138-z
- Hou D.P., Ni X., Bai C., Pre-Jordan algebras, Math. Scand. 112 (2013), no. 1, 19–48. MR3057597
- Jacobson N., Structure and Representations of Jordan Algebras, American Mathematical Society, Providence, 1968. Zbl0218.17010MR0251099
- Kolesnikov P.S., 10.1007/s11202-008-0026-8, Sib. Math. J. 49 (2008), no. 2, 257–272. Zbl1164.17002MR2419658DOI10.1007/s11202-008-0026-8
- Kolesnikov P.S., Voronin V.Yu., 10.1080/03081087.2012.686108, Linear Multilinear Algebra 61 (2013), no. 3, 377–391. Zbl1273.17003MR3003431DOI10.1080/03081087.2012.686108
- Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. 39 (1993), 269–293. Zbl0806.55009MR1252069
- Loday J.-L., Dialgebras, in: Loday J.-L., Frabetti A., Chapoton F., Goichot F. (Eds), Dialgebras and related operads, Lectures Notes in Mathematics, 1763, Springer, Berlin, 2001, pp. 105–110. Zbl0999.17002MR1860994
- Loday J.-L., Pirashvili T., 10.1007/BF01445099, Math. Ann. 296 (1993), 139–158. Zbl0821.17022MR1213376DOI10.1007/BF01445099
- Loday J.-L., Ronco M., 10.1090/conm/346/06296, in: Goerss P.G., Priddy S. (Eds.), Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Contemp. Math. 346 (2004), 369–398. Zbl1065.18007MR2066507DOI10.1090/conm/346/06296
- Loday J.-L., Vallette B., Algebraic Operads, Gründlehren der mathematischen Wissenschaften, 346, Springer, Heidelberg, 2012. Zbl1260.18001
- Pei J., Bai C., Guo L., Splitting of operads and Rota–Baxter operators on operads, arXiv:1306.3046 [math.CT].
- Strohmayer H., 10.1016/j.jpaa.2008.04.009, J. Pure Appl. Algebra 212 (2008), 2522–2534. Zbl1149.18006MR2440264DOI10.1016/j.jpaa.2008.04.009
- Uchino K., On distributive laws in derived bracket construction and homotopy theory of derived bracket Leibniz algebras, arXiv:1110.4188v5 [math.QA].
- Vallette B., 10.1016/j.jpaa.2006.03.012, J. Pure Appl. Algebra 208 (2007), no. 2, 699–725. Zbl1109.18002MR2277706DOI10.1016/j.jpaa.2006.03.012
- Vallette B., Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. Reine Angew. Math. 620 (2008), 105–164. Zbl1159.18001MR2427978
- Velasquez R., Felipe R., 10.1080/00927870701865996, Comm. Algebra 36 (2008), no. 4, 1580–1602. Zbl1188.17022MR2410352DOI10.1080/00927870701865996
- Voronin V., 10.1142/S0219498811005531, J. Algebra Appl. 11 (2012), no. 2, 23 p. MR2925443DOI10.1142/S0219498811005531
- Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I., Rings That Are Nearly Associative, Academic Press, New York, 1982. Zbl0487.17001MR0668355
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.