Embedding of dendriform algebras into Rota-Baxter algebras
Vsevolod Gubarev; Pavel Kolesnikov
Open Mathematics (2013)
- Volume: 11, Issue: 2, page 226-245
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topVsevolod Gubarev, and Pavel Kolesnikov. "Embedding of dendriform algebras into Rota-Baxter algebras." Open Mathematics 11.2 (2013): 226-245. <http://eudml.org/doc/269180>.
@article{VsevolodGubarev2013,
abstract = {Following a recent work [Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. IMRN (in press), DOI: 10.1093/imrn/rnr266] we define what is a dendriform dior trialgebra corresponding to an arbitrary variety Var of binary algebras (associative, commutative, Poisson, etc.). We call such algebras di- or tri-Var-dendriform algebras, respectively. We prove in general that the operad governing the variety of di- or tri-Var-dendriform algebras is Koszul dual to the operad governing di- or trialgebras corresponding to Var!. We also prove that every di-Var-dendriform algebra can be embedded into a Rota-Baxter algebra of weight zero in the variety Var, and every tri-Var-dendriform algebra can be embedded into a Rota-Baxter algebra of nonzero weight in Var.},
author = {Vsevolod Gubarev, Pavel Kolesnikov},
journal = {Open Mathematics},
keywords = {Dendriform algebra; Dialgebra; Trialgebra; Rota-Baxter operator; Operad; Manin product; dendriform algebra; dialgebra; trialgebra; operad},
language = {eng},
number = {2},
pages = {226-245},
title = {Embedding of dendriform algebras into Rota-Baxter algebras},
url = {http://eudml.org/doc/269180},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Vsevolod Gubarev
AU - Pavel Kolesnikov
TI - Embedding of dendriform algebras into Rota-Baxter algebras
JO - Open Mathematics
PY - 2013
VL - 11
IS - 2
SP - 226
EP - 245
AB - Following a recent work [Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. IMRN (in press), DOI: 10.1093/imrn/rnr266] we define what is a dendriform dior trialgebra corresponding to an arbitrary variety Var of binary algebras (associative, commutative, Poisson, etc.). We call such algebras di- or tri-Var-dendriform algebras, respectively. We prove in general that the operad governing the variety of di- or tri-Var-dendriform algebras is Koszul dual to the operad governing di- or trialgebras corresponding to Var!. We also prove that every di-Var-dendriform algebra can be embedded into a Rota-Baxter algebra of weight zero in the variety Var, and every tri-Var-dendriform algebra can be embedded into a Rota-Baxter algebra of nonzero weight in Var.
LA - eng
KW - Dendriform algebra; Dialgebra; Trialgebra; Rota-Baxter operator; Operad; Manin product; dendriform algebra; dialgebra; trialgebra; operad
UR - http://eudml.org/doc/269180
ER -
References
top- [1] Aguiar M., Pre-Poisson algebras, Lett. Math. Phys., 2000, 54(4), 263–277 http://dx.doi.org/10.1023/A:1010818119040
- [2] Andrews G.E., Guo L., Keigher W., Ono K., Baxter algebras and Hopf algebras, Trans. Amer. Math. Soc., 2003, 355(11), 4639–4656 http://dx.doi.org/10.1090/S0002-9947-03-03326-9 Zbl1056.16025
- [3] Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. IMRN (in press), DOI: 10.1093/imrn/rnr266 Zbl1314.18010
- [4] Bai C., Guo L., Ni X., O-operators on associative algebras and dendriform algebras, preprint available at http://arxiv.org/abs/1003.2432 Zbl1300.16036
- [5] Bai C., Liu L., Ni X., Some results on L-dendriform algebras, J. Geom. Phys., 2010, 60(6–8), 940–950 http://dx.doi.org/10.1016/j.geomphys.2010.02.007 Zbl1207.17002
- [6] Bakalov B., D’Andrea A., Kac V.G., Theory of finite pseudoalgebras, Adv. Math., 2001, 162(1), 1–140 http://dx.doi.org/10.1006/aima.2001.1993 Zbl1001.16021
- [7] Baxter G., An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., 1960, 10, 731–742 Zbl0095.12705
- [8] Belavin A.A., Drinfel’d V.G., Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl., 1982, 16(3), 159–180 http://dx.doi.org/10.1007/BF01081585
- [9] Bokut L.A., Chen Yu., Deng X., Gröbner-Shirshov bases for Rota-Baxter algebras, Sib. Math. J., 2010, 51(6), 978–988 http://dx.doi.org/10.1007/s11202-010-0097-1 Zbl1235.16021
- [10] Cartier P., On the structure of free Baxter algebras, Adv. in Math., 1972, 9, 253–265 http://dx.doi.org/10.1016/0001-8708(72)90018-7
- [11] Chapoton F., Un endofoncteur de la catégorie des opérades, In: Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 105–110 http://dx.doi.org/10.1007/3-540-45328-8_4
- [12] Chen Y., Mo Q., Embedding dendriform algebra into its universal enveloping Rota-Baxter algebra, Proc. Amer. Math. Soc., 2011, 139(12), 4207–4216 http://dx.doi.org/10.1090/S0002-9939-2011-10889-X Zbl1254.17001
- [13] Connes A., Kreimer D., Renormalization in quantum field theory and the Riemann-Hilbert problem. I: The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys., 2000, 210(1), 249–273 http://dx.doi.org/10.1007/s002200050779 Zbl1032.81026
- [14] Connes A., Kreimer D., Renormalization in quantum field theory and the Riemann-Hilbert problem. II: The β-function, diffeomorphisms and the renormalization group, Comm. Math. Phys., 2001, 216(1), 215–241 http://dx.doi.org/10.1007/PL00005547 Zbl1042.81059
- [15] Ebrahimi-Fard K., Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys., 2002, 61(2), 139–147 http://dx.doi.org/10.1023/A:1020712215075 Zbl1035.17001
- [16] Ebrahimi-Fard K., Guo L., On products and duality of binary, quadratic, regular operads, J. Pure Appl. Algebra, 2005, 200(3), 293–317 http://dx.doi.org/10.1016/j.jpaa.2004.12.020 Zbl1082.18007
- [17] Ebrahimi-Fard K., Guo L., Mixable shuffles, quasi-shuffles and Hopf algebras, J. Algebraic Combin., 2006, 24(1), 83–101 http://dx.doi.org/10.1007/s10801-006-9103-x Zbl1103.16025
- [18] Ebrahimi-Fard K., Guo L., Rota-Baxter algebras and dendriform algebras, J. Pure Appl. Algebra, 2008, 212(2), 320–339 http://dx.doi.org/10.1016/j.jpaa.2007.05.025 Zbl1132.16032
- [19] Ginzburg V., Kapranov M., Koszul duality for operads, Duke Math. J., 1994, 76(1), 203–272 http://dx.doi.org/10.1215/S0012-7094-94-07608-4
- [20] Golenishcheva-Kutuzova M.I., Kac V.G., Γ-conformal algebras, J. Math. Phys., 1998, 39(4), 2290–2305 http://dx.doi.org/10.1063/1.532289 Zbl1031.81527
- [21] Gubarev V.Yu., Kolesnikov P.S., The Tits-Kantor-Koecher construction for Jordan dialgebras, Comm. Algebra, 2011, 39(2), 497–520 http://dx.doi.org/10.1080/00927871003591967 Zbl1272.17032
- [22] Guo L., An Introduction to Rota-Baxter Algebra, available at http://math.newark.rutgers.edu/_liguo/rbabook.pdf Zbl1271.16001
- [23] Kolesnikov P., Identities of conformal algebras and pseudoalgebras, Comm. Algebra, 2006, 34(6), 1965–1979 http://dx.doi.org/10.1080/00927870500542945 Zbl1144.17020
- [24] Kolesnikov P.S., Varieties of dialgebras and conformal algebras, Sib. Math. J., 2008, 49(2), 257–272 http://dx.doi.org/10.1007/s11202-008-0026-8 Zbl1164.17002
- [25] Leinster T., Higher Operads, Higher Categories, London Math. Soc. Lecture Note Ser., 298, Cambridge University Press, Cambridge, 2004 Zbl1160.18001
- [26] Leroux P., Construction of Nijenhuis operators and dendriform trialgebras, Int. J. Math. Math. Sci., 2004, 49–52, 2595–2615 http://dx.doi.org/10.1155/S0161171204402117 Zbl1116.17002
- [27] Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math., 1993, 39(3–4), 269–293
- [28] Loday J.-L., Dialgebras, In: Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66
- [29] Loday J.-L., Pirashvili T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 1993, 296(1), 139–158 http://dx.doi.org/10.1007/BF01445099 Zbl0821.17022
- [30] Loday J.-L., Ronco M., Trialgebras and families of polytopes, In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, Contemp. Math., 346, American Mathematical Society, Providence, 2004, 369–398 http://dx.doi.org/10.1090/conm/346/06296
- [31] Loday J.-L., Vallette B., Algebraic Operads, Grundlehren Math. Wiss., 346, Springer, Heidelberg, 2012 Zbl1260.18001
- [32] May J.P., Geometry of Iterated Loop Spaces, Lecture Notes in Math., 271, Springer, Berlin-New York, 1972 Zbl0244.55009
- [33] Pozhidaev A.P., 0-dialgebras with bar-unity, Rota-Baxter and 3-Leibniz algebras, In: Groups, Rings and Group Rings, Contemp. Math., 499, American Mathematical Society, Providence, 2009, 245–256 Zbl1323.17007
- [34] Rota G.-C., Baxter algebras and combinatorial identities I, II, Bull. Amer. Math. Soc., 1969, 75(2), 325–329, 330–334 http://dx.doi.org/10.1090/S0002-9904-1969-12156-7
- [35] Semenov-Tyan-Shanskii M.A., What is a classical r-matrix?, Funct. Anal. Appl., 1983, 17(4), 259–272 http://dx.doi.org/10.1007/BF01076717 Zbl0535.58031
- [36] Spitzer F., A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc., 1956, 82, 323–339 http://dx.doi.org/10.1090/S0002-9947-1956-0079851-X Zbl0071.13003
- [37] Stasheff J., What is … an operad? Notices Amer. Math. Soc., 2004, 51(6), 630–631 Zbl1151.18301
- [38] Uchino K., Derived bracket construction and Manin products, Lett. Math. Phys., 2010, 90(1), 37–53 http://dx.doi.org/10.1007/s11005-010-0400-x Zbl1198.18001
- [39] Uchino K., On distributive laws in derived bracket construction, preprint available at http://arxiv.org/abs/1110.4188v1
- [40] Vallette B., Homology of generalized partition posets, J. Pure Appl. Algebra, 2007, 208(2), 699–725 http://dx.doi.org/10.1016/j.jpaa.2006.03.012 Zbl1109.18002
- [41] Vallette B., Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. Reine Angew. Math., 2008, 620, 105–164 Zbl1159.18001
- [42] Voronin V., Special and exceptional Jordan dialgebras, J. Algebra Appl., 2012, 11(2), #1250029 Zbl1300.17022
- [43] Zinbiel G.W., Encyclopedia of types of algebras 2010, preprint available at http://arxiv.org/abs/1101.0267
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.