Idempotent completion of pretriangulated categories

Jichun Liu; Longgang Sun

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 2, page 477-494
  • ISSN: 0011-4642

Abstract

top
A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.

How to cite

top

Liu, Jichun, and Sun, Longgang. "Idempotent completion of pretriangulated categories." Czechoslovak Mathematical Journal 64.2 (2014): 477-494. <http://eudml.org/doc/262007>.

@article{Liu2014,
abstract = {A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.},
author = {Liu, Jichun, Sun, Longgang},
journal = {Czechoslovak Mathematical Journal},
keywords = {idempotent completion; pretriangulated category; torsion pair; idempotent completion; pretriangulated category; torsion pair},
language = {eng},
number = {2},
pages = {477-494},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Idempotent completion of pretriangulated categories},
url = {http://eudml.org/doc/262007},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Liu, Jichun
AU - Sun, Longgang
TI - Idempotent completion of pretriangulated categories
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 477
EP - 494
AB - A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.
LA - eng
KW - idempotent completion; pretriangulated category; torsion pair; idempotent completion; pretriangulated category; torsion pair
UR - http://eudml.org/doc/262007
ER -

References

top
  1. Anderson, F. W., Fuller, K. R., Rings and Categories of Modules, (2nd ed.) Graduate Texts in Mathematicis 13 Springer, New York (1992). (1992) Zbl0765.16001MR1245487
  2. Assem, I., Beligiannis, A., Marmaridis, N., Right triangulated categories with right semiequivalences, Algebras and Modules II I. Reiten et al. CMS Conf. Proc. 24 AMS, Providence 17-37 (1998). (1998) MR1648611
  3. Auslander, M., 10.1016/0040-9383(69)90006-8, Topology 8 (1969), 151-166. (1969) Zbl0204.36401MR0237606DOI10.1016/0040-9383(69)90006-8
  4. Balmer, P., Schlichting, M., 10.1006/jabr.2000.8529, J. Algebra 236 (2001), 819-834. (2001) Zbl0977.18009MR1813503DOI10.1006/jabr.2000.8529
  5. Beligiannis, A., 10.7146/math.scand.a-14329, Math. Scand. 89 (2001), 5-45. (2001) Zbl1023.55009MR1856980DOI10.7146/math.scand.a-14329
  6. Beligiannis, A., Marmaridis, N., 10.1080/00927879408825119, Commun. Algebra 22 (1994), 5021-5036. (1994) Zbl0811.18005MR1285724DOI10.1080/00927879408825119
  7. Beligiannis, A., Reiten, I., Homological and homotopical aspects of torsion theories, Mem. Am. Math. Soc. 188 (2007). (2007) Zbl1124.18005MR2327478
  8. Bühler, T., 10.1016/j.exmath.2009.04.004, Expo. Math. 28 (2010), 1-69. (2010) Zbl1192.18007MR2606234DOI10.1016/j.exmath.2009.04.004
  9. Dickson, S. E., 10.1090/S0002-9947-1966-0191935-0, Trans. Am. Math. Soc. 121 (1966), 223-235. (1966) Zbl0138.01801MR0191935DOI10.1090/S0002-9947-1966-0191935-0
  10. Hartshorne, R., 10.1006/aima.1998.1762, Adv. Math. 140 (1998), 44-94. (1998) Zbl0921.13010MR1656482DOI10.1006/aima.1998.1762
  11. Karoubi, M., 10.24033/asens.1163, French Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270. (1968) Zbl0194.24101MR0238927DOI10.24033/asens.1163
  12. Kashiwara, M., Schapira, P., Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften 332 Springer, Berlin (2006). (2006) Zbl1118.18001MR2182076
  13. Koenig, S., Zhu, B., 10.1007/s00209-007-0165-9, Math. Z. 258 (2008), 143-160. (2008) Zbl1133.18005MR2350040DOI10.1007/s00209-007-0165-9
  14. Miličić, D., Lecture on Derived Categories. www.math.utah.edu/ {milicic/Eprints/dercat.pdf}, . 
  15. Verdier, J.-L., Des catégories dérivées des catégories abéliennes, French Astérisque 239 Société Mathématique de France, Paris (1996). (1996) Zbl0882.18010MR1453167

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.