Idempotent completion of pretriangulated categories
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 2, page 477-494
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Jichun, and Sun, Longgang. "Idempotent completion of pretriangulated categories." Czechoslovak Mathematical Journal 64.2 (2014): 477-494. <http://eudml.org/doc/262007>.
@article{Liu2014,
abstract = {A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.},
author = {Liu, Jichun, Sun, Longgang},
journal = {Czechoslovak Mathematical Journal},
keywords = {idempotent completion; pretriangulated category; torsion pair; idempotent completion; pretriangulated category; torsion pair},
language = {eng},
number = {2},
pages = {477-494},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Idempotent completion of pretriangulated categories},
url = {http://eudml.org/doc/262007},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Liu, Jichun
AU - Sun, Longgang
TI - Idempotent completion of pretriangulated categories
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 477
EP - 494
AB - A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.
LA - eng
KW - idempotent completion; pretriangulated category; torsion pair; idempotent completion; pretriangulated category; torsion pair
UR - http://eudml.org/doc/262007
ER -
References
top- Anderson, F. W., Fuller, K. R., Rings and Categories of Modules, (2nd ed.) Graduate Texts in Mathematicis 13 Springer, New York (1992). (1992) Zbl0765.16001MR1245487
- Assem, I., Beligiannis, A., Marmaridis, N., Right triangulated categories with right semiequivalences, Algebras and Modules II I. Reiten et al. CMS Conf. Proc. 24 AMS, Providence 17-37 (1998). (1998) MR1648611
- Auslander, M., 10.1016/0040-9383(69)90006-8, Topology 8 (1969), 151-166. (1969) Zbl0204.36401MR0237606DOI10.1016/0040-9383(69)90006-8
- Balmer, P., Schlichting, M., 10.1006/jabr.2000.8529, J. Algebra 236 (2001), 819-834. (2001) Zbl0977.18009MR1813503DOI10.1006/jabr.2000.8529
- Beligiannis, A., 10.7146/math.scand.a-14329, Math. Scand. 89 (2001), 5-45. (2001) Zbl1023.55009MR1856980DOI10.7146/math.scand.a-14329
- Beligiannis, A., Marmaridis, N., 10.1080/00927879408825119, Commun. Algebra 22 (1994), 5021-5036. (1994) Zbl0811.18005MR1285724DOI10.1080/00927879408825119
- Beligiannis, A., Reiten, I., Homological and homotopical aspects of torsion theories, Mem. Am. Math. Soc. 188 (2007). (2007) Zbl1124.18005MR2327478
- Bühler, T., 10.1016/j.exmath.2009.04.004, Expo. Math. 28 (2010), 1-69. (2010) Zbl1192.18007MR2606234DOI10.1016/j.exmath.2009.04.004
- Dickson, S. E., 10.1090/S0002-9947-1966-0191935-0, Trans. Am. Math. Soc. 121 (1966), 223-235. (1966) Zbl0138.01801MR0191935DOI10.1090/S0002-9947-1966-0191935-0
- Hartshorne, R., 10.1006/aima.1998.1762, Adv. Math. 140 (1998), 44-94. (1998) Zbl0921.13010MR1656482DOI10.1006/aima.1998.1762
- Karoubi, M., 10.24033/asens.1163, French Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270. (1968) Zbl0194.24101MR0238927DOI10.24033/asens.1163
- Kashiwara, M., Schapira, P., Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften 332 Springer, Berlin (2006). (2006) Zbl1118.18001MR2182076
- Koenig, S., Zhu, B., 10.1007/s00209-007-0165-9, Math. Z. 258 (2008), 143-160. (2008) Zbl1133.18005MR2350040DOI10.1007/s00209-007-0165-9
- Miličić, D., Lecture on Derived Categories. www.math.utah.edu/ {milicic/Eprints/dercat.pdf}, .
- Verdier, J.-L., Des catégories dérivées des catégories abéliennes, French Astérisque 239 Société Mathématique de France, Paris (1996). (1996) Zbl0882.18010MR1453167
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.