Some results on the local cohomology of minimax modules

Ahmad Abbasi; Hajar Roshan-Shekalgourabi; Dawood Hassanzadeh-Lelekaami

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 2, page 327-333
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative Noetherian ring with identity and I an ideal of R . It is shown that, if M is a non-zero minimax R -module such that dim Supp H I i ( M ) 1 for all i , then the R -module H I i ( M ) is I -cominimax for all i . In fact, H I i ( M ) is I -cofinite for all i 1 . Also, we prove that for a weakly Laskerian R -module M , if R is local and t is a non-negative integer such that dim Supp H I i ( M ) 2 for all i < t , then Ext R j ( R / I , H I i ( M ) ) and Hom R ( R / I , H I t ( M ) ) are weakly Laskerian for all i < t and all j 0 . As a consequence, the set of associated primes of H I i ( M ) is finite for all i 0 , whenever dim R / I 2 and M is weakly Laskerian.

How to cite

top

Abbasi, Ahmad, Roshan-Shekalgourabi, Hajar, and Hassanzadeh-Lelekaami, Dawood. "Some results on the local cohomology of minimax modules." Czechoslovak Mathematical Journal 64.2 (2014): 327-333. <http://eudml.org/doc/262014>.

@article{Abbasi2014,
abstract = {Let $R$ be a commutative Noetherian ring with identity and $I$ an ideal of $R$. It is shown that, if $M$ is a non-zero minimax $R$-module such that $\dim \mathop \{\rm Supp\} H^i_I (M) \le 1$ for all $i$, then the $R$-module $H^i_I(M)$ is $I$-cominimax for all $i$. In fact, $H^i_I(M)$ is $I$-cofinite for all $i\ge 1$. Also, we prove that for a weakly Laskerian $R$-module $M$, if $R$ is local and $t$ is a non-negative integer such that $\dim \mathop \{\rm Supp\} H^i_I (M)\le 2$ for all $i<t$, then $\{\rm Ext\}^j_R (R/I, H^i_I (M))$ and $\{\rm Hom\}_R(R/I, H^t_I(M))$ are weakly Laskerian for all $i<t$ and all $j \ge 0$. As a consequence, the set of associated primes of $H^i_I (M)$ is finite for all $i\ge 0$, whenever $\dim R/I \le 2$ and $M$ is weakly Laskerian.},
author = {Abbasi, Ahmad, Roshan-Shekalgourabi, Hajar, Hassanzadeh-Lelekaami, Dawood},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology module; Krull dimension; minimax module; cofinite module; weakly Laskerian module; associated primes; associated prime ideals; cofinite modules; Krull dimension; local cohomology modules; minimax modules; weakly Laskerian modules},
language = {eng},
number = {2},
pages = {327-333},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on the local cohomology of minimax modules},
url = {http://eudml.org/doc/262014},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Abbasi, Ahmad
AU - Roshan-Shekalgourabi, Hajar
AU - Hassanzadeh-Lelekaami, Dawood
TI - Some results on the local cohomology of minimax modules
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 327
EP - 333
AB - Let $R$ be a commutative Noetherian ring with identity and $I$ an ideal of $R$. It is shown that, if $M$ is a non-zero minimax $R$-module such that $\dim \mathop {\rm Supp} H^i_I (M) \le 1$ for all $i$, then the $R$-module $H^i_I(M)$ is $I$-cominimax for all $i$. In fact, $H^i_I(M)$ is $I$-cofinite for all $i\ge 1$. Also, we prove that for a weakly Laskerian $R$-module $M$, if $R$ is local and $t$ is a non-negative integer such that $\dim \mathop {\rm Supp} H^i_I (M)\le 2$ for all $i<t$, then ${\rm Ext}^j_R (R/I, H^i_I (M))$ and ${\rm Hom}_R(R/I, H^t_I(M))$ are weakly Laskerian for all $i<t$ and all $j \ge 0$. As a consequence, the set of associated primes of $H^i_I (M)$ is finite for all $i\ge 0$, whenever $\dim R/I \le 2$ and $M$ is weakly Laskerian.
LA - eng
KW - local cohomology module; Krull dimension; minimax module; cofinite module; weakly Laskerian module; associated primes; associated prime ideals; cofinite modules; Krull dimension; local cohomology modules; minimax modules; weakly Laskerian modules
UR - http://eudml.org/doc/262014
ER -

References

top
  1. Azami, J., Naghipour, R., Vakili, B., 10.1090/S0002-9939-08-09530-0, Proc. Am. Math. Soc. 137 (2009), 439-448. (2009) MR2448562DOI10.1090/S0002-9939-08-09530-0
  2. Bahmanpour, K., 10.7146/math.scand.a-18002, Math. Scand. 115 (2014), 62-68. (2014) MR3250048DOI10.7146/math.scand.a-18002
  3. Bahmanpour, K., Naghipour, R., 10.1090/S0002-9939-08-09260-5, Proc. Am. Math. Soc. 136 (2008), 2359-2363. (2008) MR2390502DOI10.1090/S0002-9939-08-09260-5
  4. Bahmanpour, K., Naghipour, R., 10.1016/j.jalgebra.2008.12.020, J. Algebra 321 (2009), 1997-2011. (2009) Zbl1168.13016MR2494753DOI10.1016/j.jalgebra.2008.12.020
  5. Brodmann, M. P., Sharp, R. Y., Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627
  6. Chiriacescu, G., 10.1112/S0024609399006499, Bull. Lond. Math. Soc. 32 (2000), 1-7. (2000) Zbl1018.13009MR1718769DOI10.1112/S0024609399006499
  7. Delfino, D., 10.1017/S0305004100071929, Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. (1994) Zbl0806.13005MR1253283DOI10.1017/S0305004100071929
  8. Delfino, D., Marley, T., 10.1016/S0022-4049(96)00044-8, J. Pure Appl. Algebra 121 (1997), 45-52. (1997) Zbl0893.13005MR1471123DOI10.1016/S0022-4049(96)00044-8
  9. Divaani-Aazar, K., Mafi, A., 10.1090/S0002-9939-04-07728-7, Proc. Am. Math. Soc. (electronic) 133 (2005), 655-660. (2005) Zbl1103.13010MR2113911DOI10.1090/S0002-9939-04-07728-7
  10. Divaani-Aazar, K., Mafi, A., 10.1080/00927870500387945, Commun. Algebra 34 (2006), 681-690. (2006) Zbl1097.13021MR2211948DOI10.1080/00927870500387945
  11. Enochs, E., 10.1090/S0002-9939-1984-0754698-X, Proc. Am. Math. Soc. 92 (1984), 179-184. (1984) Zbl0522.13008MR0754698DOI10.1090/S0002-9939-1984-0754698-X
  12. Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
  13. Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
  14. Mafi, A., 10.1007/s12044-009-0016-1, Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. (2009) Zbl1171.13011MR2526419DOI10.1007/s12044-009-0016-1
  15. Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
  16. Quy, P. H., 10.1090/S0002-9939-10-10235-4, Proc. Am. Math. Soc. 138 (2010), 1965-1968. (2010) Zbl1190.13010MR2596030DOI10.1090/S0002-9939-10-10235-4
  17. Robbins, H. R., Finiteness of Associated Primes of Local Cohomology Modules, Ph.D. Thesis, University of Michigan (2008). (2008) MR2712251
  18. Yoshida, K.-I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371
  19. Zink, T., 10.1002/mana.19740640114, German Math. Nachr. 64 (1974), 239-252. (1974) Zbl0297.13015MR0364223DOI10.1002/mana.19740640114
  20. Zöschinger, H., 10.1016/0021-8693(86)90125-0, German J. Algebra 102 (1986), 1-32. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0
  21. Zöschinger, H., On the maximality condition for radically full submodules, German Hokkaido Math. J. 17 (1988), 101-116. (1988) Zbl0653.13011MR0928469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.