Some results on the local cohomology of minimax modules
Ahmad Abbasi; Hajar Roshan-Shekalgourabi; Dawood Hassanzadeh-Lelekaami
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 2, page 327-333
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbbasi, Ahmad, Roshan-Shekalgourabi, Hajar, and Hassanzadeh-Lelekaami, Dawood. "Some results on the local cohomology of minimax modules." Czechoslovak Mathematical Journal 64.2 (2014): 327-333. <http://eudml.org/doc/262014>.
@article{Abbasi2014,
abstract = {Let $R$ be a commutative Noetherian ring with identity and $I$ an ideal of $R$. It is shown that, if $M$ is a non-zero minimax $R$-module such that $\dim \mathop \{\rm Supp\} H^i_I (M) \le 1$ for all $i$, then the $R$-module $H^i_I(M)$ is $I$-cominimax for all $i$. In fact, $H^i_I(M)$ is $I$-cofinite for all $i\ge 1$. Also, we prove that for a weakly Laskerian $R$-module $M$, if $R$ is local and $t$ is a non-negative integer such that $\dim \mathop \{\rm Supp\} H^i_I (M)\le 2$ for all $i<t$, then $\{\rm Ext\}^j_R (R/I, H^i_I (M))$ and $\{\rm Hom\}_R(R/I, H^t_I(M))$ are weakly Laskerian for all $i<t$ and all $j \ge 0$. As a consequence, the set of associated primes of $H^i_I (M)$ is finite for all $i\ge 0$, whenever $\dim R/I \le 2$ and $M$ is weakly Laskerian.},
author = {Abbasi, Ahmad, Roshan-Shekalgourabi, Hajar, Hassanzadeh-Lelekaami, Dawood},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology module; Krull dimension; minimax module; cofinite module; weakly Laskerian module; associated primes; associated prime ideals; cofinite modules; Krull dimension; local cohomology modules; minimax modules; weakly Laskerian modules},
language = {eng},
number = {2},
pages = {327-333},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on the local cohomology of minimax modules},
url = {http://eudml.org/doc/262014},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Abbasi, Ahmad
AU - Roshan-Shekalgourabi, Hajar
AU - Hassanzadeh-Lelekaami, Dawood
TI - Some results on the local cohomology of minimax modules
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 327
EP - 333
AB - Let $R$ be a commutative Noetherian ring with identity and $I$ an ideal of $R$. It is shown that, if $M$ is a non-zero minimax $R$-module such that $\dim \mathop {\rm Supp} H^i_I (M) \le 1$ for all $i$, then the $R$-module $H^i_I(M)$ is $I$-cominimax for all $i$. In fact, $H^i_I(M)$ is $I$-cofinite for all $i\ge 1$. Also, we prove that for a weakly Laskerian $R$-module $M$, if $R$ is local and $t$ is a non-negative integer such that $\dim \mathop {\rm Supp} H^i_I (M)\le 2$ for all $i<t$, then ${\rm Ext}^j_R (R/I, H^i_I (M))$ and ${\rm Hom}_R(R/I, H^t_I(M))$ are weakly Laskerian for all $i<t$ and all $j \ge 0$. As a consequence, the set of associated primes of $H^i_I (M)$ is finite for all $i\ge 0$, whenever $\dim R/I \le 2$ and $M$ is weakly Laskerian.
LA - eng
KW - local cohomology module; Krull dimension; minimax module; cofinite module; weakly Laskerian module; associated primes; associated prime ideals; cofinite modules; Krull dimension; local cohomology modules; minimax modules; weakly Laskerian modules
UR - http://eudml.org/doc/262014
ER -
References
top- Azami, J., Naghipour, R., Vakili, B., 10.1090/S0002-9939-08-09530-0, Proc. Am. Math. Soc. 137 (2009), 439-448. (2009) MR2448562DOI10.1090/S0002-9939-08-09530-0
- Bahmanpour, K., 10.7146/math.scand.a-18002, Math. Scand. 115 (2014), 62-68. (2014) MR3250048DOI10.7146/math.scand.a-18002
- Bahmanpour, K., Naghipour, R., 10.1090/S0002-9939-08-09260-5, Proc. Am. Math. Soc. 136 (2008), 2359-2363. (2008) MR2390502DOI10.1090/S0002-9939-08-09260-5
- Bahmanpour, K., Naghipour, R., 10.1016/j.jalgebra.2008.12.020, J. Algebra 321 (2009), 1997-2011. (2009) Zbl1168.13016MR2494753DOI10.1016/j.jalgebra.2008.12.020
- Brodmann, M. P., Sharp, R. Y., Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627
- Chiriacescu, G., 10.1112/S0024609399006499, Bull. Lond. Math. Soc. 32 (2000), 1-7. (2000) Zbl1018.13009MR1718769DOI10.1112/S0024609399006499
- Delfino, D., 10.1017/S0305004100071929, Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. (1994) Zbl0806.13005MR1253283DOI10.1017/S0305004100071929
- Delfino, D., Marley, T., 10.1016/S0022-4049(96)00044-8, J. Pure Appl. Algebra 121 (1997), 45-52. (1997) Zbl0893.13005MR1471123DOI10.1016/S0022-4049(96)00044-8
- Divaani-Aazar, K., Mafi, A., 10.1090/S0002-9939-04-07728-7, Proc. Am. Math. Soc. (electronic) 133 (2005), 655-660. (2005) Zbl1103.13010MR2113911DOI10.1090/S0002-9939-04-07728-7
- Divaani-Aazar, K., Mafi, A., 10.1080/00927870500387945, Commun. Algebra 34 (2006), 681-690. (2006) Zbl1097.13021MR2211948DOI10.1080/00927870500387945
- Enochs, E., 10.1090/S0002-9939-1984-0754698-X, Proc. Am. Math. Soc. 92 (1984), 179-184. (1984) Zbl0522.13008MR0754698DOI10.1090/S0002-9939-1984-0754698-X
- Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
- Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
- Mafi, A., 10.1007/s12044-009-0016-1, Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. (2009) Zbl1171.13011MR2526419DOI10.1007/s12044-009-0016-1
- Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
- Quy, P. H., 10.1090/S0002-9939-10-10235-4, Proc. Am. Math. Soc. 138 (2010), 1965-1968. (2010) Zbl1190.13010MR2596030DOI10.1090/S0002-9939-10-10235-4
- Robbins, H. R., Finiteness of Associated Primes of Local Cohomology Modules, Ph.D. Thesis, University of Michigan (2008). (2008) MR2712251
- Yoshida, K.-I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371
- Zink, T., 10.1002/mana.19740640114, German Math. Nachr. 64 (1974), 239-252. (1974) Zbl0297.13015MR0364223DOI10.1002/mana.19740640114
- Zöschinger, H., 10.1016/0021-8693(86)90125-0, German J. Algebra 102 (1986), 1-32. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0
- Zöschinger, H., On the maximality condition for radically full submodules, German Hokkaido Math. J. 17 (1988), 101-116. (1988) Zbl0653.13011MR0928469
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.