Cominimaxness of local cohomology modules
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 1, page 75-86
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAghapournahr, Moharram. "Cominimaxness of local cohomology modules." Czechoslovak Mathematical Journal 69.1 (2019): 75-86. <http://eudml.org/doc/294842>.
@article{Aghapournahr2019,
abstract = {Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$. Let $t\in \mathbb \{N\}_0$ be an integer and $M$ an $R$-module such that $\{\rm Ext\}^i_R(R/I,M)$ is minimax for all $i\le t+1$. We prove that if $H^\{i\}_\{I\}(M)$ is $\{\rm FD\}_\{\le 1\}$ (or weakly Laskerian) for all $i<t$, then the $R$-modules $H^\{i\}_\{I\}(M)$ are $I$-cominimax for all $i<t$ and $\{\rm Ext\}^i_R(R/I,H^\{t\}_\{I\}(M))$ is minimax for $i=0,1$. Let $N$ be a finitely generated $R$-module. We prove that $\{\rm Ext\}^j_R(N,H^\{i\}_\{I\}(M))$ and $\{\rm Tor\}^R_\{j\}(N,H^\{i\}_I(M))$ are $I$-cominimax for all $i$ and $j$ whenever $M$ is minimax and $H^\{i\}_\{I\}(M)$ is $\{\rm FD\}_\{\le 1\}$ (or weakly Laskerian) for all $i$.},
author = {Aghapournahr, Moharram},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology; $\{\rm FD\}_\{\le n\}$ modules; cofinite modules; cominimax modules},
language = {eng},
number = {1},
pages = {75-86},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cominimaxness of local cohomology modules},
url = {http://eudml.org/doc/294842},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Aghapournahr, Moharram
TI - Cominimaxness of local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 75
EP - 86
AB - Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$. Let $t\in \mathbb {N}_0$ be an integer and $M$ an $R$-module such that ${\rm Ext}^i_R(R/I,M)$ is minimax for all $i\le t+1$. We prove that if $H^{i}_{I}(M)$ is ${\rm FD}_{\le 1}$ (or weakly Laskerian) for all $i<t$, then the $R$-modules $H^{i}_{I}(M)$ are $I$-cominimax for all $i<t$ and ${\rm Ext}^i_R(R/I,H^{t}_{I}(M))$ is minimax for $i=0,1$. Let $N$ be a finitely generated $R$-module. We prove that ${\rm Ext}^j_R(N,H^{i}_{I}(M))$ and ${\rm Tor}^R_{j}(N,H^{i}_I(M))$ are $I$-cominimax for all $i$ and $j$ whenever $M$ is minimax and $H^{i}_{I}(M)$ is ${\rm FD}_{\le 1}$ (or weakly Laskerian) for all $i$.
LA - eng
KW - local cohomology; ${\rm FD}_{\le n}$ modules; cofinite modules; cominimax modules
UR - http://eudml.org/doc/294842
ER -
References
top- Abbasi, A., Roshan-Shekalgourabi, H., Hassanzadeh-Lelekaami, D., 10.1007/s10587-014-0104-y, Czech. Math. J. 64 (2014), 327-333. (2014) Zbl1340.13009MRMR3277739DOI10.1007/s10587-014-0104-y
- Aghapournahr, M., Bahmanpour, K., Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 57(105) (2014), 347-356. (2014) Zbl1340.13010MR3288929
- Asadollahi, J., Khashyarmanesh, K., Salarian, S., 10.1017/S1446788700008132, J. Aust. Math. Soc. 75 (2003), 313-324. (2003) Zbl1096.13522MR2015320DOI10.1017/S1446788700008132
- Azami, J., Naghipour, R., Vakili, B., 10.1090/S0002-9939-08-09530-0, Proc. Amer. Math. Soc. 137 (2009), 439-448. (2009) Zbl1157.13014MR2448562DOI10.1090/S0002-9939-08-09530-0
- Bahmanpour, K., 10.7146/math.scand.a-18002, Math. Scand. 115 (2014), 62-68. (2014) Zbl1306.13010MR3250048DOI10.7146/math.scand.a-18002
- Bahmanpour, K., 10.1016/j.jalgebra.2017.04.019, J. Algebra 484 (2017), 168-197. (2017) Zbl06732231MR3656717DOI10.1016/j.jalgebra.2017.04.019
- Bahmanpour, K., Naghipour, R., 10.1090/S0002-9939-08-09260-5, Proc. Am. Math. Soc. 136 (2008), 2359-2363. (2008) Zbl1141.13014MR2390502DOI10.1090/S0002-9939-08-09260-5
- Bahmanpour, K., Naghipour, R., 10.1016/j.jalgebra.2008.12.020, J. Algebra 321 (2009), 1997-2011. (2009) Zbl1168.13016MR2494753DOI10.1016/j.jalgebra.2008.12.020
- Bahmanpour, K., Naghipour, R., Sedghi, M., 10.1080/00927872.2012.662709, Commun. Algebra 41 (2013), 2799-2814. (2013) Zbl1273.13025MR3169421DOI10.1080/00927872.2012.662709
- Bahmanpour, K., Naghipour, R., Sedghi, M., 10.1090/S0002-9939-2014-11836-3, Proc. Am. Math. Soc. 142 (2014), 1101-1107. (2014) Zbl1286.13017MR3162233DOI10.1090/S0002-9939-2014-11836-3
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). (1993) Zbl0788.13005MR1251956DOI10.1017/CBO9780511608681
- Delfino, D., Marley, T., 10.1016/S0022-4049(96)00044-8, J. Pure Appl. Algebra 121 (1997), 45-52. (1997) Zbl0893.13005MR1471123DOI10.1016/S0022-4049(96)00044-8
- Dibaei, M. T., Yassemi, S., 10.1007/s00229-005-0538-5, Manuscr. Math. 117 (2005), 199-205. (2005) Zbl1105.13016MR2150481DOI10.1007/s00229-005-0538-5
- Dibaei, M. T., Yassemi, S., Associated primes of the local cohomology modules, Abelian Groups, Rings, Modules, and Homological Algebra P. Goeters, O. M. G. Jenda Lecture Notes in Pure and Applied Mathematics 249, Chapman & Hall/CRC, Boca Raton (2006), 51-58. (2006) Zbl1124.13009MR2229101
- Divaani-Aazar, K., Mafi, A., 10.1090/S0002-9939-04-07728-7, Proc. Am. Math. Soc. 133 (2005), 655-660. (2005) Zbl1103.13010MR2113911DOI10.1090/S0002-9939-04-07728-7
- Enochs, E., 10.2307/2045180, Proc. Am. Math. Soc. 92 (1984), 179-184. (1984) Zbl0522.13008MR0754698DOI10.2307/2045180
- Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz loceaux et globeaux (SGA 2), Advanced Studies in Pure Mathematics 2, North-Holland Publishing, Amsterdam (1968), French. (1968) Zbl0197.47202MR0476737
- Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
- Hassanzadeh-Lelekaami, D., Roshan-Shekalgourabi, H., 10.1080/00927872.2016.1172613, Commun. Algebra 45 (2017), 621-629. (2017) Zbl1360.13044MR3562526DOI10.1080/00927872.2016.1172613
- Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
- Irani, Y., 10.4134/BKMS.b160100, Bull. Korean Math. Soc. 54 (2017), 289-298. (2017) Zbl1359.13017MR3614578DOI10.4134/BKMS.b160100
- Kawasaki, K.-I., 10.1007/s00209-010-0751-0, Math. Z. 269 (2011), 587-608. (2011) Zbl1228.13020MR2836085DOI10.1007/s00209-010-0751-0
- Lorestani, K. B., Sahandi, P., Yassemi, S., 10.4153/CMB-2007-058-8, Can. Math. Bull. 50 (2007), 598-602. (2007) Zbl1140.13016MR2364209DOI10.4153/CMB-2007-058-8
- MacDonald, I. G., Secondary representation of modules over a commutative ring, Symposia Mathematica 11 Academic Press, London (1973), 23-43. (1973) Zbl0271.13001MR0342506
- Mafi, A., 10.4134/BKMS.2011.48.6.1125, Bull. Korean Math. Soc. 48 (2011), 1125-1128. (2011) Zbl1232.13009MR2894880DOI10.4134/BKMS.2011.48.6.1125
- Marley, T., Vassilev, J. C., 10.1016/S0021-8693(02)00151-5, J. Algebra 256 (2002), 180-193. (2002) Zbl1042.13010MR1936885DOI10.1016/S0021-8693(02)00151-5
- Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge (1968). (1968) Zbl0603.13001MR0879273DOI10.1017/CBO9781139171762
- Melkersson, L., 10.1017/S0305004198003041, Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. (1999) Zbl0921.13009MR1656785DOI10.1017/S0305004198003041
- Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
- Melkersson, L., 10.1016/j.jalgebra.2012.10.005, J. Algebra 372 (2012), 459-462. (2012) Zbl1273.13029MR2990020DOI10.1016/j.jalgebra.2012.10.005
- Quy, P. H., 10.1090/S0002-9939-10-10235-4, Proc. Am. Math. Soc. 138 (2010), 1965-1968. (2010) Zbl1190.13010MR2596030DOI10.1090/S0002-9939-10-10235-4
- Schenzel, P., 10.7146/math.scand.a-14399, Math. Scand. 92 (2003), 161-180. (2003) Zbl1023.13011MR1973941DOI10.7146/math.scand.a-14399
- Yoshida, K.-I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371
- Yoshizawa, T., 10.1090/S0002-9939-2011-11108-0, Proc. Am. Math. Soc. 140 (2012), 2293-2305. (2012) Zbl1273.13018MR2898693DOI10.1090/S0002-9939-2011-11108-0
- Zink, T., 10.1002/mana.19740640114, Math. Nachr. 64 (1974), 239-252 German. (1974) Zbl0297.13015MR0364223DOI10.1002/mana.19740640114
- Zöschinger, H., 10.1016/0021-8693(86)90125-0, J. Algebra 102 (1986), 1-32 German. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.