Cominimaxness of local cohomology modules

Moharram Aghapournahr

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 75-86
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative Noetherian ring, I an ideal of R . Let t 0 be an integer and M an R -module such that Ext R i ( R / I , M ) is minimax for all i t + 1 . We prove that if H I i ( M ) is FD 1 (or weakly Laskerian) for all i < t , then the R -modules H I i ( M ) are I -cominimax for all i < t and Ext R i ( R / I , H I t ( M ) ) is minimax for i = 0 , 1 . Let N be a finitely generated R -module. We prove that Ext R j ( N , H I i ( M ) ) and Tor j R ( N , H I i ( M ) ) are I -cominimax for all i and j whenever M is minimax and H I i ( M ) is FD 1 (or weakly Laskerian) for all i .

How to cite

top

Aghapournahr, Moharram. "Cominimaxness of local cohomology modules." Czechoslovak Mathematical Journal 69.1 (2019): 75-86. <http://eudml.org/doc/294842>.

@article{Aghapournahr2019,
abstract = {Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$. Let $t\in \mathbb \{N\}_0$ be an integer and $M$ an $R$-module such that $\{\rm Ext\}^i_R(R/I,M)$ is minimax for all $i\le t+1$. We prove that if $H^\{i\}_\{I\}(M)$ is $\{\rm FD\}_\{\le 1\}$ (or weakly Laskerian) for all $i<t$, then the $R$-modules $H^\{i\}_\{I\}(M)$ are $I$-cominimax for all $i<t$ and $\{\rm Ext\}^i_R(R/I,H^\{t\}_\{I\}(M))$ is minimax for $i=0,1$. Let $N$ be a finitely generated $R$-module. We prove that $\{\rm Ext\}^j_R(N,H^\{i\}_\{I\}(M))$ and $\{\rm Tor\}^R_\{j\}(N,H^\{i\}_I(M))$ are $I$-cominimax for all $i$ and $j$ whenever $M$ is minimax and $H^\{i\}_\{I\}(M)$ is $\{\rm FD\}_\{\le 1\}$ (or weakly Laskerian) for all $i$.},
author = {Aghapournahr, Moharram},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology; $\{\rm FD\}_\{\le n\}$ modules; cofinite modules; cominimax modules},
language = {eng},
number = {1},
pages = {75-86},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cominimaxness of local cohomology modules},
url = {http://eudml.org/doc/294842},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Aghapournahr, Moharram
TI - Cominimaxness of local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 75
EP - 86
AB - Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$. Let $t\in \mathbb {N}_0$ be an integer and $M$ an $R$-module such that ${\rm Ext}^i_R(R/I,M)$ is minimax for all $i\le t+1$. We prove that if $H^{i}_{I}(M)$ is ${\rm FD}_{\le 1}$ (or weakly Laskerian) for all $i<t$, then the $R$-modules $H^{i}_{I}(M)$ are $I$-cominimax for all $i<t$ and ${\rm Ext}^i_R(R/I,H^{t}_{I}(M))$ is minimax for $i=0,1$. Let $N$ be a finitely generated $R$-module. We prove that ${\rm Ext}^j_R(N,H^{i}_{I}(M))$ and ${\rm Tor}^R_{j}(N,H^{i}_I(M))$ are $I$-cominimax for all $i$ and $j$ whenever $M$ is minimax and $H^{i}_{I}(M)$ is ${\rm FD}_{\le 1}$ (or weakly Laskerian) for all $i$.
LA - eng
KW - local cohomology; ${\rm FD}_{\le n}$ modules; cofinite modules; cominimax modules
UR - http://eudml.org/doc/294842
ER -

References

top
  1. Abbasi, A., Roshan-Shekalgourabi, H., Hassanzadeh-Lelekaami, D., 10.1007/s10587-014-0104-y, Czech. Math. J. 64 (2014), 327-333. (2014) Zbl1340.13009MRMR3277739DOI10.1007/s10587-014-0104-y
  2. Aghapournahr, M., Bahmanpour, K., Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 57(105) (2014), 347-356. (2014) Zbl1340.13010MR3288929
  3. Asadollahi, J., Khashyarmanesh, K., Salarian, S., 10.1017/S1446788700008132, J. Aust. Math. Soc. 75 (2003), 313-324. (2003) Zbl1096.13522MR2015320DOI10.1017/S1446788700008132
  4. Azami, J., Naghipour, R., Vakili, B., 10.1090/S0002-9939-08-09530-0, Proc. Amer. Math. Soc. 137 (2009), 439-448. (2009) Zbl1157.13014MR2448562DOI10.1090/S0002-9939-08-09530-0
  5. Bahmanpour, K., 10.7146/math.scand.a-18002, Math. Scand. 115 (2014), 62-68. (2014) Zbl1306.13010MR3250048DOI10.7146/math.scand.a-18002
  6. Bahmanpour, K., 10.1016/j.jalgebra.2017.04.019, J. Algebra 484 (2017), 168-197. (2017) Zbl06732231MR3656717DOI10.1016/j.jalgebra.2017.04.019
  7. Bahmanpour, K., Naghipour, R., 10.1090/S0002-9939-08-09260-5, Proc. Am. Math. Soc. 136 (2008), 2359-2363. (2008) Zbl1141.13014MR2390502DOI10.1090/S0002-9939-08-09260-5
  8. Bahmanpour, K., Naghipour, R., 10.1016/j.jalgebra.2008.12.020, J. Algebra 321 (2009), 1997-2011. (2009) Zbl1168.13016MR2494753DOI10.1016/j.jalgebra.2008.12.020
  9. Bahmanpour, K., Naghipour, R., Sedghi, M., 10.1080/00927872.2012.662709, Commun. Algebra 41 (2013), 2799-2814. (2013) Zbl1273.13025MR3169421DOI10.1080/00927872.2012.662709
  10. Bahmanpour, K., Naghipour, R., Sedghi, M., 10.1090/S0002-9939-2014-11836-3, Proc. Am. Math. Soc. 142 (2014), 1101-1107. (2014) Zbl1286.13017MR3162233DOI10.1090/S0002-9939-2014-11836-3
  11. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
  12. Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). (1993) Zbl0788.13005MR1251956DOI10.1017/CBO9780511608681
  13. Delfino, D., Marley, T., 10.1016/S0022-4049(96)00044-8, J. Pure Appl. Algebra 121 (1997), 45-52. (1997) Zbl0893.13005MR1471123DOI10.1016/S0022-4049(96)00044-8
  14. Dibaei, M. T., Yassemi, S., 10.1007/s00229-005-0538-5, Manuscr. Math. 117 (2005), 199-205. (2005) Zbl1105.13016MR2150481DOI10.1007/s00229-005-0538-5
  15. Dibaei, M. T., Yassemi, S., Associated primes of the local cohomology modules, Abelian Groups, Rings, Modules, and Homological Algebra P. Goeters, O. M. G. Jenda Lecture Notes in Pure and Applied Mathematics 249, Chapman & Hall/CRC, Boca Raton (2006), 51-58. (2006) Zbl1124.13009MR2229101
  16. Divaani-Aazar, K., Mafi, A., 10.1090/S0002-9939-04-07728-7, Proc. Am. Math. Soc. 133 (2005), 655-660. (2005) Zbl1103.13010MR2113911DOI10.1090/S0002-9939-04-07728-7
  17. Enochs, E., 10.2307/2045180, Proc. Am. Math. Soc. 92 (1984), 179-184. (1984) Zbl0522.13008MR0754698DOI10.2307/2045180
  18. Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz loceaux et globeaux (SGA 2), Advanced Studies in Pure Mathematics 2, North-Holland Publishing, Amsterdam (1968), French. (1968) Zbl0197.47202MR0476737
  19. Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
  20. Hassanzadeh-Lelekaami, D., Roshan-Shekalgourabi, H., 10.1080/00927872.2016.1172613, Commun. Algebra 45 (2017), 621-629. (2017) Zbl1360.13044MR3562526DOI10.1080/00927872.2016.1172613
  21. Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
  22. Irani, Y., 10.4134/BKMS.b160100, Bull. Korean Math. Soc. 54 (2017), 289-298. (2017) Zbl1359.13017MR3614578DOI10.4134/BKMS.b160100
  23. Kawasaki, K.-I., 10.1007/s00209-010-0751-0, Math. Z. 269 (2011), 587-608. (2011) Zbl1228.13020MR2836085DOI10.1007/s00209-010-0751-0
  24. Lorestani, K. B., Sahandi, P., Yassemi, S., 10.4153/CMB-2007-058-8, Can. Math. Bull. 50 (2007), 598-602. (2007) Zbl1140.13016MR2364209DOI10.4153/CMB-2007-058-8
  25. MacDonald, I. G., Secondary representation of modules over a commutative ring, Symposia Mathematica 11 Academic Press, London (1973), 23-43. (1973) Zbl0271.13001MR0342506
  26. Mafi, A., 10.4134/BKMS.2011.48.6.1125, Bull. Korean Math. Soc. 48 (2011), 1125-1128. (2011) Zbl1232.13009MR2894880DOI10.4134/BKMS.2011.48.6.1125
  27. Marley, T., Vassilev, J. C., 10.1016/S0021-8693(02)00151-5, J. Algebra 256 (2002), 180-193. (2002) Zbl1042.13010MR1936885DOI10.1016/S0021-8693(02)00151-5
  28. Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge (1968). (1968) Zbl0603.13001MR0879273DOI10.1017/CBO9781139171762
  29. Melkersson, L., 10.1017/S0305004198003041, Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. (1999) Zbl0921.13009MR1656785DOI10.1017/S0305004198003041
  30. Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
  31. Melkersson, L., 10.1016/j.jalgebra.2012.10.005, J. Algebra 372 (2012), 459-462. (2012) Zbl1273.13029MR2990020DOI10.1016/j.jalgebra.2012.10.005
  32. Quy, P. H., 10.1090/S0002-9939-10-10235-4, Proc. Am. Math. Soc. 138 (2010), 1965-1968. (2010) Zbl1190.13010MR2596030DOI10.1090/S0002-9939-10-10235-4
  33. Schenzel, P., 10.7146/math.scand.a-14399, Math. Scand. 92 (2003), 161-180. (2003) Zbl1023.13011MR1973941DOI10.7146/math.scand.a-14399
  34. Yoshida, K.-I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371
  35. Yoshizawa, T., 10.1090/S0002-9939-2011-11108-0, Proc. Am. Math. Soc. 140 (2012), 2293-2305. (2012) Zbl1273.13018MR2898693DOI10.1090/S0002-9939-2011-11108-0
  36. Zink, T., 10.1002/mana.19740640114, Math. Nachr. 64 (1974), 239-252 German. (1974) Zbl0297.13015MR0364223DOI10.1002/mana.19740640114
  37. Zöschinger, H., 10.1016/0021-8693(86)90125-0, J. Algebra 102 (1986), 1-32 German. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.