Existence of solutions for fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions
Mathematica Bohemica (2014)
- Volume: 139, Issue: 3, page 451-465
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAhmad, Bashir, and Ntouyas, Sotiris. "Existence of solutions for fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions." Mathematica Bohemica 139.3 (2014): 451-465. <http://eudml.org/doc/262040>.
@article{Ahmad2014,
abstract = {In this paper, we discuss the existence of solutions for a boundary value problem of fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions. Our results include the cases when the multivalued map involved in the problem is (i) convex valued, (ii) lower semicontinuous with nonempty closed and decomposable values and (iii) nonconvex valued. In case (i) we apply a nonlinear alternative of Leray-Schauder type, in the second case we combine the nonlinear alternative of Leray-Schauder type for single-valued maps with a selection theorem due to Bressan and Colombo, while in the third case we use a fixed point theorem for multivalued contractions due to Covitz and Nadler.},
author = {Ahmad, Bashir, Ntouyas, Sotiris},
journal = {Mathematica Bohemica},
keywords = {differential inclusion; nonlocal condition; integral boundary condition; Leray Schauder alternative; fixed point theorem; differential inclusion; topological methods; nonlocal conditions; integral boundary conditions; Leray-Schauder alternative; fixed point theorem},
language = {eng},
number = {3},
pages = {451-465},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions for fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions},
url = {http://eudml.org/doc/262040},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Ahmad, Bashir
AU - Ntouyas, Sotiris
TI - Existence of solutions for fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 3
SP - 451
EP - 465
AB - In this paper, we discuss the existence of solutions for a boundary value problem of fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions. Our results include the cases when the multivalued map involved in the problem is (i) convex valued, (ii) lower semicontinuous with nonempty closed and decomposable values and (iii) nonconvex valued. In case (i) we apply a nonlinear alternative of Leray-Schauder type, in the second case we combine the nonlinear alternative of Leray-Schauder type for single-valued maps with a selection theorem due to Bressan and Colombo, while in the third case we use a fixed point theorem for multivalued contractions due to Covitz and Nadler.
LA - eng
KW - differential inclusion; nonlocal condition; integral boundary condition; Leray Schauder alternative; fixed point theorem; differential inclusion; topological methods; nonlocal conditions; integral boundary conditions; Leray-Schauder alternative; fixed point theorem
UR - http://eudml.org/doc/262040
ER -
References
top- Agarwal, R. P., Ahmad, B., 10.1016/j.camwa.2011.03.001, Comput. Math. Appl. 62 (2011), 1200-1214. (2011) Zbl1228.34009MR2824708DOI10.1016/j.camwa.2011.03.001
- Agarwal, R. P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta. Appl. Math. 109 (2010), 973-1033. (2010) Zbl1198.26004MR2596185DOI10.1007/s10440-008-9356-6
- Ahmad, B., Ntouyas, S. K., Some existence results for boundary value problems for fractional differential inclusions with non-separated boundary conditions, Electron. J. Qual. Theory Differ. Equ. (electronic only) 2010 Paper no. 71, 17 pages (2010). (2010) MR2740676
- Ahmad, B., 10.1016/j.aml.2009.11.004, Appl. Math. Lett. 23 (2010), 390-394. (2010) Zbl1198.34007MR2594849DOI10.1016/j.aml.2009.11.004
- Ahmad, B., Ntouyas, S. K., Assolami, A., 10.1007/s12190-012-0610-8, J. Appl. Math. Comput. 41 (2013), 339-350. (2013) Zbl1300.34013MR3017125DOI10.1007/s12190-012-0610-8
- Ahmad, B., Alsaedi, A., Alghamdi, B. S., Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal., Real World Appl. 9 (2008), 1727-1740. (2008) Zbl1154.34311MR2422576
- Ahmad, B., Nieto, J. J., Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstr. Appl. Anal. 2009 (2009), ID 494720, 9 pages. (2009) Zbl1186.34009MR2516016
- Ahmad, B., Nieto, J. J., Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl. 2009 ID 708576, 11 pages. Zbl1167.45003MR2525567
- Ahmad, B., Nieto, J. J., 10.1016/j.camwa.2009.07.091, Comput. Math. Appl. 58 (2009), 1838-1843. (2009) Zbl1205.34003MR2557562DOI10.1016/j.camwa.2009.07.091
- Ahmad, B., Sivasundaram, S., 10.1016/j.amc.2010.05.080, Appl. Math. Comput. 217 (2010), 480-487. (2010) Zbl1207.45014MR2678559DOI10.1016/j.amc.2010.05.080
- Bai, Z., 10.1016/j.na.2009.07.033, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 916-924. (2010) Zbl1187.34026MR2579357DOI10.1016/j.na.2009.07.033
- Balachandran, K., Trujillo, J. J., 10.1016/j.na.2010.02.035, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4587-4593. (2010) Zbl1196.34007MR2639206DOI10.1016/j.na.2010.02.035
- Bressan, A., Colombo, G., 10.4064/sm-90-1-69-86, Stud. Math. 90 (1988), 69-86. (1988) Zbl0677.54013MR0947921DOI10.4064/sm-90-1-69-86
- Boucherif, A., 10.1016/j.na.2007.12.007, Nonlinear Anal., Theory Methods Appl. 70 (2009), 364-371. (2009) Zbl1169.34310MR2468243DOI10.1016/j.na.2007.12.007
- Castaing, C., Valadier, M., 10.1007/BFb0087688, Lecture Notes in Mathematics 580 Springer, Berlin (1977). (1977) Zbl0346.46038MR0467310DOI10.1007/BFb0087688
- Covitz, H., Jr., S. B. Nadler, 10.1007/BF02771543, Isr. J. Math. 8 (1970), 5-11. (1970) MR0263062DOI10.1007/BF02771543
- Deimling, K., Multivalued Differential Equations, De Gruyter Studies in Nonlinear Analysis and Applications 1 Walter de Gruyter, Berlin (1992). (1992) Zbl0820.34009MR1189795
- Granas, A., Dugundji, J., Fixed Point Theory, Springer Monographs in Mathematics Springer, New York (2003). (2003) Zbl1025.47002MR1987179
- Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis. Volume I: Theory, Mathematics and its Applications 419 Kluwer Academic Publishers, Dordrecht (1997). (1997) Zbl0887.47001MR1485775
- Kisielewicz, M., Differential Inclusions and Optimal Control, Mathematics and Its Appplications, East European Series 44 Kluwer Academic Publishers, Dordrecht; PWN- Polish Scientific Publishers, Warszawa (1991). (1991) MR1135796
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073
- Lasota, A., Opial, Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 781-786. (1965) Zbl0151.10703MR0196178
- Podlubny, I., Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering 198 Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022
- Sabatier, J., Agrawal, O. P., (eds.), J. A. Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering Springer, Dordrecht (2007). (2007) Zbl1116.00014MR2432163
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications. Transl. from the Russian, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.