Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems

Choukri Derbazi; Hadda Hammouche

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 3, page 363-374
  • ISSN: 0862-7959

Abstract

top
We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.

How to cite

top

Derbazi, Choukri, and Hammouche, Hadda. "Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems." Mathematica Bohemica 146.3 (2021): 363-374. <http://eudml.org/doc/297535>.

@article{Derbazi2021,
abstract = {We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.},
author = {Derbazi, Choukri, Hammouche, Hadda},
journal = {Mathematica Bohemica},
keywords = {fractional Langevin equation; Caputo fractional derivative; integrable solution; existence; uniqueness; initial value problem; fixed point theorem},
language = {eng},
number = {3},
pages = {363-374},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems},
url = {http://eudml.org/doc/297535},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Derbazi, Choukri
AU - Hammouche, Hadda
TI - Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 3
SP - 363
EP - 374
AB - We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.
LA - eng
KW - fractional Langevin equation; Caputo fractional derivative; integrable solution; existence; uniqueness; initial value problem; fixed point theorem
UR - http://eudml.org/doc/297535
ER -

References

top
  1. Ahmad, B., Nieto, J. J., Alsaedi, A., 10.1186/1687-1847-2012-54, Adv. Difference Equ. 2012 (2012), Article ID 54, 16 pages. (2012) Zbl1291.34004MR2944130DOI10.1186/1687-1847-2012-54
  2. Ahmed, B., Nieto, J. J., Alsaedi, A., El-Shahed, M., 10.1016/j.nonrwa.2011.07.052, Nonlinear Anal., Real World Appl. 13 (2012), 599-606. (2012) Zbl1238.34008MR2846866DOI10.1016/j.nonrwa.2011.07.052
  3. Ahmad, B., Ntouyas, S., 10.21136/MB.2014.143936, Math. Bohem. 139 (2014), 451-465. (2014) Zbl1340.34056MR3269368DOI10.21136/MB.2014.143936
  4. Baghani, H., 10.1007/s11784-018-0540-7, J. Fixed Point Theory Appl. 20 (2018), Article ID 63, 7 pages. (2018) Zbl1397.34017MR3777810DOI10.1007/s11784-018-0540-7
  5. Bhairat, S. P., Dhaigude, D.-B., 10.21136/MB.2018.0135-17, Math. Bohem. 144 (2019), 203-220. (2019) Zbl07088846MR3974188DOI10.21136/MB.2018.0135-17
  6. Benchohra, M., Hamani, S., Ntouyas, S. K., 10.1016/j.na.2009.01.073, Nonlinear Anal., Theory Methods Appl., Ser. A 71 (2009), 2391-2396. (2009) Zbl1198.26007MR2532767DOI10.1016/j.na.2009.01.073
  7. Benchohra, M., Souid, M. S., 10.2298/FIL1606485B, Filomat 30 (2016), 1485-1492. (2016) Zbl06749806MR3530093DOI10.2298/FIL1606485B
  8. Deimling, K., 10.1007/978-3-662-00547-7, Springer, Berlin (1985). (1985) Zbl0559.47040MR0787404DOI10.1007/978-3-662-00547-7
  9. El-Sayed, A. M. A., El-Salam, S. A. Abd, L p -solution of weighted Cauchy-type problem of a diffre-integral functional equation, Int. J. Nonlinear Sci. 5 (2008), 281-288. (2008) Zbl1230.34006MR2410798
  10. El-Sayed, A. M. A., Hashem, H. H. G., 10.14232/ejqtde.2008.1.25, Electron. J. Qual. Theory Differ. Equ. 2008 (2008), Article ID 25, 10 pages. (2008) Zbl1178.45008MR2443206DOI10.14232/ejqtde.2008.1.25
  11. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
  12. Liu, Y., 10.21136/MB.2017.0029-14, Math. Bohem. 142 (2017), 405-444. (2017) Zbl06819594MR3739026DOI10.21136/MB.2017.0029-14
  13. Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience Publication. John Wiley & Sons, New York (1993). (1993) Zbl0789.26002MR1219954
  14. Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022
  15. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
  16. Seba, D., 10.21136/MB.2017.0041-16, Math. Bohem. 142 (2017), 309-321. (2017) Zbl06770148MR3695469DOI10.21136/MB.2017.0041-16
  17. Sontakke, B., Shaikh, A., Nisar, K., 10.22124/JMM.2018.9971.1147, J. Math. Model. 6 (2018), 137-148. (2018) Zbl1413.34044MR3886133DOI10.22124/JMM.2018.9971.1147
  18. Souid, M. S., 10.18052/www.scipress.com/IJARM.11.8, Int. J. Adv. Research Math. 11 (2018), 8-17. (2018) DOI10.18052/www.scipress.com/IJARM.11.8
  19. Yu, T., Deng, K., Luo, M., 10.1016/j.cnsns.2013.09.035, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1661-1668. (2014) Zbl07172530MR3144748DOI10.1016/j.cnsns.2013.09.035
  20. Zhang, S., 10.21136/MB.2010.140706, Math. Bohem. 135 (2010), 299-317. (2010) Zbl1224.26025MR2683641DOI10.21136/MB.2010.140706
  21. Zhou, Z., Qiao, Y., 10.1186/s13661-018-1070-3, Bound. Value Probl. 2018 (2018), Article ID 152, 10 pages. (2018) MR3859564DOI10.1186/s13661-018-1070-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.