Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems
Choukri Derbazi; Hadda Hammouche
Mathematica Bohemica (2021)
- Volume: 146, Issue: 3, page 363-374
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDerbazi, Choukri, and Hammouche, Hadda. "Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems." Mathematica Bohemica 146.3 (2021): 363-374. <http://eudml.org/doc/297535>.
@article{Derbazi2021,
abstract = {We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.},
author = {Derbazi, Choukri, Hammouche, Hadda},
journal = {Mathematica Bohemica},
keywords = {fractional Langevin equation; Caputo fractional derivative; integrable solution; existence; uniqueness; initial value problem; fixed point theorem},
language = {eng},
number = {3},
pages = {363-374},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems},
url = {http://eudml.org/doc/297535},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Derbazi, Choukri
AU - Hammouche, Hadda
TI - Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 3
SP - 363
EP - 374
AB - We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.
LA - eng
KW - fractional Langevin equation; Caputo fractional derivative; integrable solution; existence; uniqueness; initial value problem; fixed point theorem
UR - http://eudml.org/doc/297535
ER -
References
top- Ahmad, B., Nieto, J. J., Alsaedi, A., 10.1186/1687-1847-2012-54, Adv. Difference Equ. 2012 (2012), Article ID 54, 16 pages. (2012) Zbl1291.34004MR2944130DOI10.1186/1687-1847-2012-54
- Ahmed, B., Nieto, J. J., Alsaedi, A., El-Shahed, M., 10.1016/j.nonrwa.2011.07.052, Nonlinear Anal., Real World Appl. 13 (2012), 599-606. (2012) Zbl1238.34008MR2846866DOI10.1016/j.nonrwa.2011.07.052
- Ahmad, B., Ntouyas, S., 10.21136/MB.2014.143936, Math. Bohem. 139 (2014), 451-465. (2014) Zbl1340.34056MR3269368DOI10.21136/MB.2014.143936
- Baghani, H., 10.1007/s11784-018-0540-7, J. Fixed Point Theory Appl. 20 (2018), Article ID 63, 7 pages. (2018) Zbl1397.34017MR3777810DOI10.1007/s11784-018-0540-7
- Bhairat, S. P., Dhaigude, D.-B., 10.21136/MB.2018.0135-17, Math. Bohem. 144 (2019), 203-220. (2019) Zbl07088846MR3974188DOI10.21136/MB.2018.0135-17
- Benchohra, M., Hamani, S., Ntouyas, S. K., 10.1016/j.na.2009.01.073, Nonlinear Anal., Theory Methods Appl., Ser. A 71 (2009), 2391-2396. (2009) Zbl1198.26007MR2532767DOI10.1016/j.na.2009.01.073
- Benchohra, M., Souid, M. S., 10.2298/FIL1606485B, Filomat 30 (2016), 1485-1492. (2016) Zbl06749806MR3530093DOI10.2298/FIL1606485B
- Deimling, K., 10.1007/978-3-662-00547-7, Springer, Berlin (1985). (1985) Zbl0559.47040MR0787404DOI10.1007/978-3-662-00547-7
- El-Sayed, A. M. A., El-Salam, S. A. Abd, -solution of weighted Cauchy-type problem of a diffre-integral functional equation, Int. J. Nonlinear Sci. 5 (2008), 281-288. (2008) Zbl1230.34006MR2410798
- El-Sayed, A. M. A., Hashem, H. H. G., 10.14232/ejqtde.2008.1.25, Electron. J. Qual. Theory Differ. Equ. 2008 (2008), Article ID 25, 10 pages. (2008) Zbl1178.45008MR2443206DOI10.14232/ejqtde.2008.1.25
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
- Liu, Y., 10.21136/MB.2017.0029-14, Math. Bohem. 142 (2017), 405-444. (2017) Zbl06819594MR3739026DOI10.21136/MB.2017.0029-14
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience Publication. John Wiley & Sons, New York (1993). (1993) Zbl0789.26002MR1219954
- Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
- Seba, D., 10.21136/MB.2017.0041-16, Math. Bohem. 142 (2017), 309-321. (2017) Zbl06770148MR3695469DOI10.21136/MB.2017.0041-16
- Sontakke, B., Shaikh, A., Nisar, K., 10.22124/JMM.2018.9971.1147, J. Math. Model. 6 (2018), 137-148. (2018) Zbl1413.34044MR3886133DOI10.22124/JMM.2018.9971.1147
- Souid, M. S., 10.18052/www.scipress.com/IJARM.11.8, Int. J. Adv. Research Math. 11 (2018), 8-17. (2018) DOI10.18052/www.scipress.com/IJARM.11.8
- Yu, T., Deng, K., Luo, M., 10.1016/j.cnsns.2013.09.035, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1661-1668. (2014) Zbl07172530MR3144748DOI10.1016/j.cnsns.2013.09.035
- Zhang, S., 10.21136/MB.2010.140706, Math. Bohem. 135 (2010), 299-317. (2010) Zbl1224.26025MR2683641DOI10.21136/MB.2010.140706
- Zhou, Z., Qiao, Y., 10.1186/s13661-018-1070-3, Bound. Value Probl. 2018 (2018), Article ID 152, 10 pages. (2018) MR3859564DOI10.1186/s13661-018-1070-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.