I teoremi di assolutezza in teoria degli insiemi: prima parte

Alessandro Andretta

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-A, Issue: 1, page 57-84
  • ISSN: 0392-4041

How to cite

top

Andretta, Alessandro. "I teoremi di assolutezza in teoria degli insiemi: prima parte." Bollettino dell'Unione Matematica Italiana 6-A.1 (2003): 57-84. <http://eudml.org/doc/262079>.

@article{Andretta2003,
abstract = {Questa è la prima parte di una articolo espositivo dedicato ai teoremi di assolutezza, un argomento che sta assumendo un’importanza via via più grande in teoria degli insiemi. In questa prima parte vedremo come le questioni di teoria dei numeri non siano influenzate da assunzioni insiemistiche quali l’assioma di scelta o l’ipotesi del continuo.},
author = {Andretta, Alessandro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {4},
number = {1},
pages = {57-84},
publisher = {Unione Matematica Italiana},
title = {I teoremi di assolutezza in teoria degli insiemi: prima parte},
url = {http://eudml.org/doc/262079},
volume = {6-A},
year = {2003},
}

TY - JOUR
AU - Andretta, Alessandro
TI - I teoremi di assolutezza in teoria degli insiemi: prima parte
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/4//
PB - Unione Matematica Italiana
VL - 6-A
IS - 1
SP - 57
EP - 84
AB - Questa è la prima parte di una articolo espositivo dedicato ai teoremi di assolutezza, un argomento che sta assumendo un’importanza via via più grande in teoria degli insiemi. In questa prima parte vedremo come le questioni di teoria dei numeri non siano influenzate da assunzioni insiemistiche quali l’assioma di scelta o l’ipotesi del continuo.
LA - ita
UR - http://eudml.org/doc/262079
ER -

References

top
  1. BAUMGARTNER, J., Applications of the proper forcing axiom, in Handbook of Set Theoretic Topology, a cura di K. Kunen and Jerry E. Vaughan, North-Holland, Amsterdam (1984), vii+1273. Zbl0556.03040MR776640
  2. BECKER, J. - HENSON, C. W. - RUBEL, L., First order conformal invariants, Annals of Mathematics, 112(1980), 123-178. Zbl0459.03019MR584077DOI10.2307/1971323
  3. BLASS, A., Near coherence of filters. II. Applications to operator ideals, the Stone-Čech remainder of a half-line, order ideals of sequences, and slenderness of groups, Transactions of the American Mathematical Society, 300(1987), 557-581. Zbl0647.03043MR876466DOI10.2307/2000357
  4. BLASS, A. - WEISS, G., A characterization and sum decomposition for operator ideals, Transactions of the American Mathematical Society, 246 (1978), 407-417. Zbl0414.47017MR515547DOI10.2307/1997982
  5. BROWN, A. - PEARCY, C. - SALINAS, N., Ideals of compact operators on Hilbert space, Michigan Mathematical Journal, 18(1971), 373-384. Zbl0225.46066MR291819
  6. DALES, H. - WOODIN, W. H., An Introduction to Independence for Analysts, Cambridge University Press, Cambridge (1987), xiv+241. Zbl0629.03030MR942216DOI10.1017/CBO9780511662256
  7. DELLACHERIE, C. - MEYER, P.-A., Probabilities and Potential, North-Holland, Amsterdam (1978), viii+189. Zbl0494.60001MR521810
  8. EKLOF, P.- MEKLER, A., Almost Free Modules. Set-theoretic Methods, North-Holland, Amsterdam (1990), xvi+481. Zbl1054.20037MR1055083
  9. FOLLAND, G., Real Analysis. Modern Techniques and their Applications, John Wiley and Sons, Inc., New York (1999), xvi+386. Zbl0549.28001MR1681462
  10. GOLDSTERN, M., An application of Shoenfield’s absoluteness theorem to the theory of uniform distribution, Monatshefte für Mathematik, 116 (1993), 237-243. Zbl0811.11053MR1253684DOI10.1007/BF01301530
  11. JECH, T., Set Theory, Academic Press, New York-London (1978), xi+621. Zbl0419.03028MR506523
  12. KANAMORI, A., The Higher Infinite, Springer-Verlag, Berlin (1994), xxiv+536. Zbl0813.03034MR1321144
  13. KECHRIS, A. S., Classical Descriptive Set Theory, Springer-Verlag, New York (1995), xviii+402. Zbl0819.04002MR1321597DOI10.1007/978-1-4612-4190-4
  14. KUNEN, K., Set Theory. An Introduction to Independence Proofs, North-Holland Publishing Co., Amsterdam (1983), xvi+313. Zbl0443.03021MR756630
  15. LEMPERT, L.- RUBEL, L., An independence result in several complex variables, Proceedings of the American Mathematical Society, 113(1991), 1055-1065. Zbl0737.03027MR1052577DOI10.2307/2048784
  16. MOORE, G., Zermelo’s Axiom of Choice. Its Origins, Development and Influence, Springer-Verlag, New York (1982), xiv+410. Zbl0497.01005MR679315DOI10.1007/978-1-4613-9478-5
  17. SHELAH, S., Lifting problem of the measure algebra, Israel Journal of Mathematics, 45(1983), 90-96. Zbl0549.03041MR710248DOI10.1007/BF02760673
  18. TODORĈEVIĆ, S., Compact subsets of the first Baire class, The Journal of the American Mathematical Society, 12(1999), 1179-1212. Zbl0938.26004MR1685782DOI10.1090/S0894-0347-99-00312-4
  19. WAGON, S., The Banach-Tarski Paradox, Cambridge University Press, Cambridge (1985), xvi+251. Zbl0569.43001MR803509DOI10.1017/CBO9780511609596

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.