Linear recurrence sequences without zeros
Artūras Dubickas; Aivaras Novikas
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 3, page 857-865
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDubickas, Artūras, and Novikas, Aivaras. "Linear recurrence sequences without zeros." Czechoslovak Mathematical Journal 64.3 (2014): 857-865. <http://eudml.org/doc/262135>.
@article{Dubickas2014,
abstract = {Let $a_\{d-1\},\dots ,a_0 \in \mathbb \{Z\}$, where $d \in \mathbb \{N\}$ and $a_0 \ne 0$, and let $X=(x_n)_\{n=1\}^\{\infty \}$ be a sequence of integers given by the linear recurrence $x_\{n+d\}=a_\{d-1\}x_\{n+d-1\}+\dots +a_0x_\{n\}$ for $n=1,2,3,\dots $. We show that there are a prime number $p$ and $d$ integers $x_1,\dots ,x_d$ such that no element of the sequence $X=(x_n)_\{n=1\}^\{\infty \}$ defined by the above linear recurrence is divisible by $p$. Furthermore, for any nonnegative integer $s$ there is a prime number $p \ge 3$ and $d$ integers $x_1,\dots ,x_d$ such that every element of the sequence $X=(x_n)_\{n=1\}^\{\infty \}$ defined as above modulo $p$ belongs to the set $\lbrace s+1,s+2,\dots ,p-s-1\rbrace $.},
author = {Dubickas, Artūras, Novikas, Aivaras},
journal = {Czechoslovak Mathematical Journal},
keywords = {linear recurrence sequence; period modulo $p$; polynomial splitting in $\mathbb \{F\}_p[z]$; linear recurrence sequence; period modulo ; characteristic polynomial of a sequence; polynomial splitting in $\mathbb \{F\}_p[z]$},
language = {eng},
number = {3},
pages = {857-865},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear recurrence sequences without zeros},
url = {http://eudml.org/doc/262135},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Dubickas, Artūras
AU - Novikas, Aivaras
TI - Linear recurrence sequences without zeros
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 857
EP - 865
AB - Let $a_{d-1},\dots ,a_0 \in \mathbb {Z}$, where $d \in \mathbb {N}$ and $a_0 \ne 0$, and let $X=(x_n)_{n=1}^{\infty }$ be a sequence of integers given by the linear recurrence $x_{n+d}=a_{d-1}x_{n+d-1}+\dots +a_0x_{n}$ for $n=1,2,3,\dots $. We show that there are a prime number $p$ and $d$ integers $x_1,\dots ,x_d$ such that no element of the sequence $X=(x_n)_{n=1}^{\infty }$ defined by the above linear recurrence is divisible by $p$. Furthermore, for any nonnegative integer $s$ there is a prime number $p \ge 3$ and $d$ integers $x_1,\dots ,x_d$ such that every element of the sequence $X=(x_n)_{n=1}^{\infty }$ defined as above modulo $p$ belongs to the set $\lbrace s+1,s+2,\dots ,p-s-1\rbrace $.
LA - eng
KW - linear recurrence sequence; period modulo $p$; polynomial splitting in $\mathbb {F}_p[z]$; linear recurrence sequence; period modulo ; characteristic polynomial of a sequence; polynomial splitting in $\mathbb {F}_p[z]$
UR - http://eudml.org/doc/262135
ER -
References
top- Adleman, L. M., Odlyzko, A. M., 10.1090/S0025-5718-1983-0717715-6, Math. Comput. 41 (1983), 699-709. (1983) Zbl0527.12002MR0717715DOI10.1090/S0025-5718-1983-0717715-6
- Carroll, D., Jacobson, E., Somer, L., Distribution of two-term recurrence sequences mod , Fibonacci Q. 32 (1994), 260-265. (1994) MR1285757
- Dubickas, A., Distribution of some quadratic linear recurrence sequences modulo 1, Carpathian J. Math. 30 (2014), 79-86. (2014) MR3244094
- Dubickas, A., 10.1112/S0024609305017728, Bull. Lond. Math. Soc. 38 (2006), 70-80. (2006) Zbl1164.11025MR2201605DOI10.1112/S0024609305017728
- Dubickas, A., 10.1016/j.jnt.2005.07.004, J. Number Theory 117 (2006), 222-239. (2006) Zbl1097.11035MR2204744DOI10.1016/j.jnt.2005.07.004
- Everest, G., Poorten, A. van der, Shparlinski, I., Ward, T., 10.1090/surv/104/06, Mathematical Surveys and Monographs 104 American Mathematical Society, Providence (2003). (2003) MR1990179DOI10.1090/surv/104/06
- Kaneko, H., Limit points of fractional parts of geometric sequences, Unif. Distrib. Theory 4 (2009), 1-37. (2009) Zbl1249.11066MR2557644
- Kaneko, H., 10.1007/s00025-008-0287-3, Result. Math. 52 (2008), 91-109. (2008) Zbl1177.11060MR2430415DOI10.1007/s00025-008-0287-3
- Lagarias, J. C., Odlyzko, A. M., Effective versions of the Chebotarev density theorem, Algebraic Number Fields: -Functions and Galois Properties Proc. Symp., Durham, 1975 A. Fröhlich Academic Press, London (1977), 409-464. (1977) Zbl0362.12011MR0447191
- Laksov, D., 10.7146/math.scand.a-10759, Math. Scand. 16 (1965), 181-196. (1965) Zbl0151.01502MR0194349DOI10.7146/math.scand.a-10759
- Lidl, R., Niederreiter, H., Introduction to Finite Fields and Their Applications, Cambridge University Press Cambridge (1994). (1994) Zbl0820.11072MR1294139
- Neukirch, J., 10.1007/978-3-662-03983-0, Grundlehren der Mathematischen Wissenschaften 322 Springer, Berlin (1999). (1999) Zbl0956.11021MR1697859DOI10.1007/978-3-662-03983-0
- Niederreiter, H., Schinzel, A., Somer, L., Maximal frequencies of elements in second-order linear recurring sequences over a finite field, Elem. Math. 46 (1991), 139-143. (1991) Zbl0747.11062MR1119645
- Ribenboim, P., Walsh, G., 10.1006/jnth.1998.2315, J. Number Theory 74 (1999), 134-147. (1999) Zbl0923.11033MR1670556DOI10.1006/jnth.1998.2315
- Schinzel, A., Polynomials with special regard to reducibility, Encyclopedia of Mathematics and Its Applications 77 Cambridge University Press, Cambridge (2000). (2000) Zbl0956.12001MR1770638
- Schinzel, A., Special Lucas sequences, including the Fibonacci sequence, modulo a prime, A Tribute to Paul Erdős A. Baker, et al. Cambridge University Press Cambridge (1990), 349-357. (1990) Zbl0716.11009MR1117027
- Somer, L., Distribution of residues of certain second-order linear recurrences modulo , Applications of Fibonacci Numbers, Vol. 3 G. E. Bergum, et al. Proc. 3rd Int. Conf., Pisa, 1988 Kluwer Academic Publishers Group, Dordrecht (1990), 311-324. (1990) Zbl0722.11008MR1125803
- Somer, L., Primes having an incomplete system of residues for a class of second-order recurrences, Applications of Fibonacci Numbers, Proc. 2nd Int. Conf. A. N. Philippou, et al. Kluwer Academic Publishers Dordrecht (1988), 113-141. (1988) Zbl0653.10005MR0951911
- P. Stevenhagen, H. W. Lenstra, Jr., 10.1007/BF03027290, Math. Intell. 18 (1996), 26-37. (1996) Zbl0885.11005MR1395088DOI10.1007/BF03027290
- Voloch, J. F., 10.5802/jtnb.266, J. Théor. Nombres Bordx. 12 (2000), 81-85. (2000) Zbl1007.11069DOI10.5802/jtnb.266
- Zaïmi, T., 10.1016/j.jnt.2005.11.012, J. Number Theory 120 (2006), 179-191. (2006) Zbl1147.11037MR2256803DOI10.1016/j.jnt.2005.11.012
- Zheng, Q.-X., Qi, W.-F., Tian, T., 10.1007/s10623-012-9698-y, Des. Codes Cryptography 70 (2014), 359-368. (2014) MR3160735DOI10.1007/s10623-012-9698-y
- Zhuravleva, V., 10.5802/jtnb.846, J. Théor. Nombres Bordx. 25 (2013), 499-520. (2013) Zbl1283.11102MR3228318DOI10.5802/jtnb.846
- Zhuravleva, V., 10.1134/S0001434613110163, Math. Notes 94 (2013), 820-823 translation from Mat. Zametki 94 784-787 (2013). (2013) Zbl1284.11106MR3227021DOI10.1134/S0001434613110163
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.