Chebyshev's method for number fields

José Felipe Voloch

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 1, page 81-85
  • ISSN: 1246-7405

Abstract

top
We give an elementary proof of an explicit estimate for the number of primes splitting completely in an extension of the rationals. The proof uses binomial coefficents and extends Chebyshev's classical approach.

How to cite

top

Voloch, José Felipe. "Chebyshev's method for number fields." Journal de théorie des nombres de Bordeaux 12.1 (2000): 81-85. <http://eudml.org/doc/248512>.

@article{Voloch2000,
abstract = {We give an elementary proof of an explicit estimate for the number of primes splitting completely in an extension of the rationals. The proof uses binomial coefficents and extends Chebyshev's classical approach.},
author = {Voloch, José Felipe},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {81-85},
publisher = {Université Bordeaux I},
title = {Chebyshev's method for number fields},
url = {http://eudml.org/doc/248512},
volume = {12},
year = {2000},
}

TY - JOUR
AU - Voloch, José Felipe
TI - Chebyshev's method for number fields
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 1
SP - 81
EP - 85
AB - We give an elementary proof of an explicit estimate for the number of primes splitting completely in an extension of the rationals. The proof uses binomial coefficents and extends Chebyshev's classical approach.
LA - eng
UR - http://eudml.org/doc/248512
ER -

References

top
  1. [C] P.L. Chebyshev, Memoire sur les nombres premiers. J. Math. pures et appl.17 (1852), 366-390. 
  2. [CC] D. Chudnovsky, G. Chudnovsky, Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. In Number theory (New York, 1983-84), 52-100, Lecture Notes in Math.1135, Springer, Berlin-New York, 1985. Zbl0565.14010MR803350
  3. [DFI] W. Duke, J.B. Friedlander, H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math.141 (1995), 423-441. Zbl0840.11003MR1324141
  4. [F] J.B. Friedlander, Estimates for Prime Ideals. J. Number Theory, 12 (1980), 101-105. Zbl0428.12010MR566874
  5. [L] E. Landau, Über die zu einem algebraischen Zahlkörper gehörige Zetafunktion und die Ausdehnung der Tschebyscheffschen Primzahlentheorie auf das Problem der Verteilung der Primideale. Crelle125 (1903), 64-188. JFM33.0215.01
  6. [P] H. Poincaré, Extension aux nombres premiers complexes des Théorèmes de M. Tchebicheff. J. Math. Pures Appl. (4) 8 (1892), 25-68. JFM24.0171.02
  7. [VV] J. Vaaler, J.F. Voloch, The least nonsplit prime in Galois extensions of Q. J. Number Theory, to appear. Zbl0963.11066MR1802720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.