On Hardy q -inequalities

Lech Maligranda; Ryskul Oinarov; Lars-Erik Persson

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 3, page 659-682
  • ISSN: 0011-4642

Abstract

top
Some q -analysis variants of Hardy type inequalities of the form 0 b x α - 1 0 x t - α f ( t ) d q t p d q x C 0 b f p ( t ) d q t with sharp constant C are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.

How to cite

top

Maligranda, Lech, Oinarov, Ryskul, and Persson, Lars-Erik. "On Hardy $q$-inequalities." Czechoslovak Mathematical Journal 64.3 (2014): 659-682. <http://eudml.org/doc/262153>.

@article{Maligranda2014,
abstract = {Some $q$-analysis variants of Hardy type inequalities of the form \[ \int \_0^b \bigg (x^\{\alpha -1\} \int \_0^x t^\{-\alpha \} f(t) \{\rm d\}\_q t \bigg )^\{p\} \{\rm d\}\_q x \le C \int \_0^b f^p(t) \{\rm d\}\_q t \] with sharp constant $C$ are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.},
author = {Maligranda, Lech, Oinarov, Ryskul, Persson, Lars-Erik},
journal = {Czechoslovak Mathematical Journal},
keywords = {inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; $q$-analysis; sharp constant; discrete Hardy type inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; -analysis; sharp constant; discrete Hardy type inequality},
language = {eng},
number = {3},
pages = {659-682},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Hardy $q$-inequalities},
url = {http://eudml.org/doc/262153},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Maligranda, Lech
AU - Oinarov, Ryskul
AU - Persson, Lars-Erik
TI - On Hardy $q$-inequalities
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 659
EP - 682
AB - Some $q$-analysis variants of Hardy type inequalities of the form \[ \int _0^b \bigg (x^{\alpha -1} \int _0^x t^{-\alpha } f(t) {\rm d}_q t \bigg )^{p} {\rm d}_q x \le C \int _0^b f^p(t) {\rm d}_q t \] with sharp constant $C$ are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.
LA - eng
KW - inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; $q$-analysis; sharp constant; discrete Hardy type inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; -analysis; sharp constant; discrete Hardy type inequality
UR - http://eudml.org/doc/262153
ER -

References

top
  1. Al-Salam, W. A., 10.1017/S0013091500011469, Proc. Edinb. Math. Soc., II. Ser. 15 (1966), 135-140. (1966) Zbl0171.10301MR0218848DOI10.1017/S0013091500011469
  2. Bangerezako, G., 10.1016/j.jmaa.2004.12.029, J. Math. Anal. Appl. 306 (2005), 161-179. (2005) Zbl1095.49005MR2132895DOI10.1016/j.jmaa.2004.12.029
  3. Bennett, G., Factorizing the Classical Inequalities, Memoirs of the American Mathematical Society 576 AMS, Providence (1996). (1996) Zbl0857.26009MR1317938
  4. Bennett, G., 10.1093/qmathj/49.4.395, Q. J. Math., Oxf. II. Ser. 49 (1998), 395-432. (1998) MR1652236DOI10.1093/qmathj/49.4.395
  5. Bennett, G., Series of positive terms, Conf. Proc. Poznań, Poland, 2003 Z. Ciesielski et al. Banach Center Publications 64 Polish Academy of Sciences, Institute of Mathematics, Warsaw (2004), 29-38. (2004) Zbl1058.26011MR2099457
  6. Bennett, G., Sums of powers and the meaning of l p , Houston J. Math. 32 (2006), 801-831. (2006) MR2247911
  7. Cass, F. P., Kratz, W., 10.1216/rmjm/1181073159, Rocky Mt. J. Math. 20 (1990), 59-74. (1990) MR1057975DOI10.1216/rmjm/1181073159
  8. Ernst, T., A Comprehensive Treatment of q -calculus, Birkhäuser Basel (2012). (2012) Zbl1256.33001MR2976799
  9. Ernst, T., The History of q -Calculus and a New Method, Uppsala University Uppsala (2000), http://www2.math.uu.se/research/pub/Ernst4.pdf. (2000) 
  10. Exton, H., q -Hypergeometric Functions and Applications, Ellis Horwood Series in Mathematics and Its Applications Halsted Press, Chichester (1983). (1983) Zbl0514.33001MR0708496
  11. Gao, P., 10.1090/S0002-9939-05-07964-5, Proc. Am. Math. Soc. 133 (2005), 1977-1984. (2005) Zbl1068.26015MR2137863DOI10.1090/S0002-9939-05-07964-5
  12. Gao, P., 10.1016/j.jmaa.2008.01.024, J. Math. Anal. Appl. 343 (2008), 48-57. (2008) Zbl1138.26309MR2409456DOI10.1016/j.jmaa.2008.01.024
  13. Gao, P., 10.1007/s00209-009-0490-2, Math. Z. 264 (2010), 829-848. (2010) Zbl1190.47012MR2593296DOI10.1007/s00209-009-0490-2
  14. Gao, P., On weighted mean matrices whose l p norms are determined on decreasing sequences, Math. Inequal. Appl. 14 (2011), 373-387. (2011) Zbl1237.47008MR2816127
  15. Gauchman, H., 10.1016/S0898-1221(04)90025-9, Comput. Math. Appl. 47 (2004), 281-300. (2004) Zbl1041.05006MR2047944DOI10.1016/S0898-1221(04)90025-9
  16. Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, (2nd ed.), Cambridge University Press Cambridge (1952). (1952) Zbl0047.05302MR0046395
  17. Jackson, F. H., On q -definite integrals, Quart. J. 41 (1910), 193-203. (1910) 
  18. Kac, V., Cheung, P., Quantum Calculus, Universitext Springer, New York (2002). (2002) Zbl0986.05001MR1865777
  19. Krasniqi, V., 10.7153/jmi-05-39, J. Math. Inequal. 5 (2011), 451. (2011) Zbl1225.26046MR2865561DOI10.7153/jmi-05-39
  20. Kufner, A., Maligranda, L., Persson, L.-E., The Hardy Inequality. About Its History and Some Related Results, Vydavatelský Servis Plzeň (2007). (2007) Zbl1213.42001MR2351524
  21. Kufner, A., Maligranda, L., Persson, L.-E., 10.2307/27642033, Am. Math. Mon. 113 (2006), 715-732. (2006) Zbl1153.01015MR2256532DOI10.2307/27642033
  22. Kufner, A., Persson, L.-E., Weighted Inequalities of Hardy Type, World Scientific Singapore (2003). (2003) Zbl1065.26018MR1982932
  23. Maligranda, L., 10.7153/mia-01-05, Math. Inequal. Appl. 1 (1998), 69-83. (1998) Zbl0889.26001MR1492911DOI10.7153/mia-01-05
  24. Miao, Y., Qi, F., 10.7153/jmi-03-11, J. Math. Inequal. 3 (2009), 115-121. (2009) Zbl1181.26009MR2502546DOI10.7153/jmi-03-11
  25. Persson, L.-E., Samko, N., What should have happened if Hardy had discovered this?, J. Inequal. Appl. (electronic only) 2012 (2012), Article ID 29, 11 pages. (2012) Zbl1282.26038MR2925639
  26. Stanković, M. S., Rajković, P. M., Marinković, S. D., On q -fractional derivatives of Riemann-Liouville and Caputo type, arXiv: 0909.0387v1[math.CA], 2 Sept. 2009. 
  27. Sulaiman, W. T., 10.4236/apm.2011.13017, Advances in Pure Math. 1 (2011), 77-80. (2011) MR2724033DOI10.4236/apm.2011.13017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.