On Hardy -inequalities
Lech Maligranda; Ryskul Oinarov; Lars-Erik Persson
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 3, page 659-682
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMaligranda, Lech, Oinarov, Ryskul, and Persson, Lars-Erik. "On Hardy $q$-inequalities." Czechoslovak Mathematical Journal 64.3 (2014): 659-682. <http://eudml.org/doc/262153>.
@article{Maligranda2014,
abstract = {Some $q$-analysis variants of Hardy type inequalities of the form \[ \int \_0^b \bigg (x^\{\alpha -1\} \int \_0^x t^\{-\alpha \} f(t) \{\rm d\}\_q t \bigg )^\{p\} \{\rm d\}\_q x \le C \int \_0^b f^p(t) \{\rm d\}\_q t \]
with sharp constant $C$ are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.},
author = {Maligranda, Lech, Oinarov, Ryskul, Persson, Lars-Erik},
journal = {Czechoslovak Mathematical Journal},
keywords = {inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; $q$-analysis; sharp constant; discrete Hardy type inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; -analysis; sharp constant; discrete Hardy type inequality},
language = {eng},
number = {3},
pages = {659-682},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Hardy $q$-inequalities},
url = {http://eudml.org/doc/262153},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Maligranda, Lech
AU - Oinarov, Ryskul
AU - Persson, Lars-Erik
TI - On Hardy $q$-inequalities
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 659
EP - 682
AB - Some $q$-analysis variants of Hardy type inequalities of the form \[ \int _0^b \bigg (x^{\alpha -1} \int _0^x t^{-\alpha } f(t) {\rm d}_q t \bigg )^{p} {\rm d}_q x \le C \int _0^b f^p(t) {\rm d}_q t \]
with sharp constant $C$ are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.
LA - eng
KW - inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; $q$-analysis; sharp constant; discrete Hardy type inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; -analysis; sharp constant; discrete Hardy type inequality
UR - http://eudml.org/doc/262153
ER -
References
top- Al-Salam, W. A., 10.1017/S0013091500011469, Proc. Edinb. Math. Soc., II. Ser. 15 (1966), 135-140. (1966) Zbl0171.10301MR0218848DOI10.1017/S0013091500011469
- Bangerezako, G., 10.1016/j.jmaa.2004.12.029, J. Math. Anal. Appl. 306 (2005), 161-179. (2005) Zbl1095.49005MR2132895DOI10.1016/j.jmaa.2004.12.029
- Bennett, G., Factorizing the Classical Inequalities, Memoirs of the American Mathematical Society 576 AMS, Providence (1996). (1996) Zbl0857.26009MR1317938
- Bennett, G., 10.1093/qmathj/49.4.395, Q. J. Math., Oxf. II. Ser. 49 (1998), 395-432. (1998) MR1652236DOI10.1093/qmathj/49.4.395
- Bennett, G., Series of positive terms, Conf. Proc. Poznań, Poland, 2003 Z. Ciesielski et al. Banach Center Publications 64 Polish Academy of Sciences, Institute of Mathematics, Warsaw (2004), 29-38. (2004) Zbl1058.26011MR2099457
- Bennett, G., Sums of powers and the meaning of , Houston J. Math. 32 (2006), 801-831. (2006) MR2247911
- Cass, F. P., Kratz, W., 10.1216/rmjm/1181073159, Rocky Mt. J. Math. 20 (1990), 59-74. (1990) MR1057975DOI10.1216/rmjm/1181073159
- Ernst, T., A Comprehensive Treatment of -calculus, Birkhäuser Basel (2012). (2012) Zbl1256.33001MR2976799
- Ernst, T., The History of -Calculus and a New Method, Uppsala University Uppsala (2000), http://www2.math.uu.se/research/pub/Ernst4.pdf. (2000)
- Exton, H., -Hypergeometric Functions and Applications, Ellis Horwood Series in Mathematics and Its Applications Halsted Press, Chichester (1983). (1983) Zbl0514.33001MR0708496
- Gao, P., 10.1090/S0002-9939-05-07964-5, Proc. Am. Math. Soc. 133 (2005), 1977-1984. (2005) Zbl1068.26015MR2137863DOI10.1090/S0002-9939-05-07964-5
- Gao, P., 10.1016/j.jmaa.2008.01.024, J. Math. Anal. Appl. 343 (2008), 48-57. (2008) Zbl1138.26309MR2409456DOI10.1016/j.jmaa.2008.01.024
- Gao, P., 10.1007/s00209-009-0490-2, Math. Z. 264 (2010), 829-848. (2010) Zbl1190.47012MR2593296DOI10.1007/s00209-009-0490-2
- Gao, P., On weighted mean matrices whose norms are determined on decreasing sequences, Math. Inequal. Appl. 14 (2011), 373-387. (2011) Zbl1237.47008MR2816127
- Gauchman, H., 10.1016/S0898-1221(04)90025-9, Comput. Math. Appl. 47 (2004), 281-300. (2004) Zbl1041.05006MR2047944DOI10.1016/S0898-1221(04)90025-9
- Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, (2nd ed.), Cambridge University Press Cambridge (1952). (1952) Zbl0047.05302MR0046395
- Jackson, F. H., On -definite integrals, Quart. J. 41 (1910), 193-203. (1910)
- Kac, V., Cheung, P., Quantum Calculus, Universitext Springer, New York (2002). (2002) Zbl0986.05001MR1865777
- Krasniqi, V., 10.7153/jmi-05-39, J. Math. Inequal. 5 (2011), 451. (2011) Zbl1225.26046MR2865561DOI10.7153/jmi-05-39
- Kufner, A., Maligranda, L., Persson, L.-E., The Hardy Inequality. About Its History and Some Related Results, Vydavatelský Servis Plzeň (2007). (2007) Zbl1213.42001MR2351524
- Kufner, A., Maligranda, L., Persson, L.-E., 10.2307/27642033, Am. Math. Mon. 113 (2006), 715-732. (2006) Zbl1153.01015MR2256532DOI10.2307/27642033
- Kufner, A., Persson, L.-E., Weighted Inequalities of Hardy Type, World Scientific Singapore (2003). (2003) Zbl1065.26018MR1982932
- Maligranda, L., 10.7153/mia-01-05, Math. Inequal. Appl. 1 (1998), 69-83. (1998) Zbl0889.26001MR1492911DOI10.7153/mia-01-05
- Miao, Y., Qi, F., 10.7153/jmi-03-11, J. Math. Inequal. 3 (2009), 115-121. (2009) Zbl1181.26009MR2502546DOI10.7153/jmi-03-11
- Persson, L.-E., Samko, N., What should have happened if Hardy had discovered this?, J. Inequal. Appl. (electronic only) 2012 (2012), Article ID 29, 11 pages. (2012) Zbl1282.26038MR2925639
- Stanković, M. S., Rajković, P. M., Marinković, S. D., On -fractional derivatives of Riemann-Liouville and Caputo type, arXiv: 0909.0387v1[math.CA], 2 Sept. 2009.
- Sulaiman, W. T., 10.4236/apm.2011.13017, Advances in Pure Math. 1 (2011), 77-80. (2011) MR2724033DOI10.4236/apm.2011.13017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.