On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric

Dong Qiu; Chongxia Lu; Shuai Deng; Liang Wang

Kybernetika (2014)

  • Volume: 50, Issue: 5, page 758-773
  • ISSN: 0023-5954

Abstract

top
In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.

How to cite

top

Qiu, Dong, et al. "On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric." Kybernetika 50.5 (2014): 758-773. <http://eudml.org/doc/262158>.

@article{Qiu2014,
abstract = {In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.},
author = {Qiu, Dong, Lu, Chongxia, Deng, Shuai, Wang, Liang},
journal = {Kybernetika},
keywords = {Hausdorff metric; hyperspace; triangular norms; stationary fuzzy metric; Hausdorff metric; hyperspace; triangular norms; stationary fuzzy metric},
language = {eng},
number = {5},
pages = {758-773},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric},
url = {http://eudml.org/doc/262158},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Qiu, Dong
AU - Lu, Chongxia
AU - Deng, Shuai
AU - Wang, Liang
TI - On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 5
SP - 758
EP - 773
AB - In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.
LA - eng
KW - Hausdorff metric; hyperspace; triangular norms; stationary fuzzy metric; Hausdorff metric; hyperspace; triangular norms; stationary fuzzy metric
UR - http://eudml.org/doc/262158
ER -

References

top
  1. Adibi, H., Cho, Y. J., O'Regan, D., Saadati, R., 10.1016/j.amc.2006.04.045, Appl. Math. Comput. 182 (2006), 820-828. MR2292091DOI10.1016/j.amc.2006.04.045
  2. Aubin, J. P., Ekeland, I., Applied Nonlinear Analysis., Wiley, New York 1984. Zbl1115.47049MR0749753
  3. Azé, D., Corvellec, J. N., Lucchetti, R. E., Variational pairs and applications to stability in nonsmooth analysis., Nonlinear Anal. Theory Methods Appl. 49 (2002), 643-670. Zbl1035.49014MR1894302
  4. Beer, G., Topologies on Closed and Closed Convex Sets., Kluwer Academic Publishers, Dordrecht 1993. Zbl0792.54008MR1269778
  5. Chang, S. S., Cho, Y. J., Lee, B. S., Jung, J. S., Kang, S. M., Coincidence point and minimization theorems in fuzzy metric spaces., Fuzzy Sets and Systems 88 (1997), 119-128. MR1449500
  6. Cho, Y. J., Petrot, N., Existence theorems for fixed fuzzy points with closed α -cut sets in complete metric spaces., Fuzzy Sets and Systems 26 (2011), 115-124. Zbl1207.54055MR2789801
  7. Deng, Z. K., 10.1016/0022-247X(82)90255-4, J. Math. Anal. Appl. 86 (1982), 74-95. Zbl0589.54006DOI10.1016/0022-247X(82)90255-4
  8. Engelking, R., General Topology., PWN-Polish Science Publishers, Warsaw 1977. Zbl1281.54001MR0500780
  9. George, A., Veeramani, P., 10.1016/0165-0114(94)90162-7, Fuzzy Sets and Systems 64 (1994), 395-399. Zbl0843.54014MR1289545DOI10.1016/0165-0114(94)90162-7
  10. Ghil, B. M., Kim, Y. K., 10.1016/S0020-0255(03)00180-4, Inform. Sci. 157 (2003), 155-165. Zbl1051.54004MR2023712DOI10.1016/S0020-0255(03)00180-4
  11. Gregori, V., Sapena, A., On fixed point theorem in fuzzy metric spaces., Fuzzy Sets and Systems 125 (2002), 245-252. MR1880341
  12. Gregori, V., Romaguera, S., On completion of fuzzy metric spaces., Fuzzy Sets and Systems 130 (2002), 399-404. Zbl1010.54002MR1928435
  13. Gregori, V., Romaguera, S., 10.1016/S0165-0114(03)00161-1, Fuzzy Sets and Systems 144 (2004), 411-420. Zbl1057.54010MR2061403DOI10.1016/S0165-0114(03)00161-1
  14. Gregori, V., Morillas, S., Sapena, A., Examples of fuzzy metrics and applications., Fuzzy Sets and Systems 170 (2011), 95-111. Zbl1210.94016MR2775611
  15. Hausdorff, F., Set Theory., Chelsea, New York 1957. Zbl1149.01022MR0086020
  16. Hop, N.V., 10.1016/j.ins.2006.12.001, Inform. Sci. 177 (2007), 1977-1991. Zbl1128.90061MR2303963DOI10.1016/j.ins.2006.12.001
  17. Hop, N. V., 10.1016/j.ins.2007.01.032, Inform. Sci. 177 (2007), 2971-2984. Zbl1178.90363MR2333449DOI10.1016/j.ins.2007.01.032
  18. Joo, S. Y., Kim, Y. K., 10.1016/S0165-0114(98)00185-7, Fuzzy Sets and Systems 111 (2000), 497-501. Zbl0961.54024MR1748559DOI10.1016/S0165-0114(98)00185-7
  19. Joo, S. Y., Kim, Y. K., 10.1006/jmaa.2000.6820, J. Math. Anal. Appl. 246 (2000), 576-590. Zbl0986.54012MR1761949DOI10.1006/jmaa.2000.6820
  20. Kaleva, O., Seikkala, S., 10.1016/0165-0114(84)90069-1, Fuzzy Sets and Systems 12 (1984), 215-229. Zbl0558.54003MR0740095DOI10.1016/0165-0114(84)90069-1
  21. Kaleva, O., 10.1016/0165-0114(85)90006-5, Fuzzy Sets and Systems 17 (1985), 53-65. Zbl0584.54004MR0808463DOI10.1016/0165-0114(85)90006-5
  22. Kaleva, O., 10.1016/0165-0114(87)90029-7, Fuzzy Sets and Systems 24 (1987), 301-317. Zbl1100.34500MR0919058DOI10.1016/0165-0114(87)90029-7
  23. Kim, Y. K., 10.1006/jmaa.2001.7658, J. Math. Anal. Appl. 264 (2001), 122-132. Zbl1065.54001MR1868332DOI10.1006/jmaa.2001.7658
  24. Kim, Y. K., Compactness and convexity on the space of fuzzy sets II., Nonlinear Anal. Theory Methods Appl. 57 (2004), 639-653. Zbl1065.54001MR2067725
  25. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
  26. Kramosil, I., Michálek, J., Fuzzy metric and statistical metric spaces., Kybernetika 11 (1975), 326-334. MR0410633
  27. Matheron, G., Random Sets and Integral Geometry., Wiley, New York 1975. Zbl0321.60009MR0385969
  28. Mordukhovich, B. S., Shao, Y., 10.1016/S0362-546X(96)00082-X, Nonlinear Anal. Theory Methods Appl. 29 (1997), 605-626. Zbl0879.58006MR1452749DOI10.1016/S0362-546X(96)00082-X
  29. Jr, S. B. Nadler, 10.2140/pjm.1969.30.475, Pacific J. Math. 30 (1969), 475-487. MR0254828DOI10.2140/pjm.1969.30.475
  30. Puri, M. L., Ralescu, D. A., 10.1016/0022-247X(86)90093-4, J. Math. Anal. Appl. 114 (1986), 409-422. Zbl0605.60038MR0833596DOI10.1016/0022-247X(86)90093-4
  31. Qiu, D., Zhang, W., On Decomposable Measures Induced by Metrics., J. Appl. Math. Volume 2012, Article ID 701206, 8 pages. Zbl1252.28001MR2948100
  32. Qiu, D., Zhang, W., The strongest t-norm for fuzzy metric spaces., Kybernetika 49 (2013), 141-148. Zbl1264.54020MR3097387
  33. Qiu, D., Zhang, W., Li, C., 10.1080/03081079.2012.758879, Int. J. Gen. Syst. 42 (2013), 395-404. Zbl1280.28018MR3022374DOI10.1080/03081079.2012.758879
  34. Qiu, D., Zhang, W., Li, C., Extension of a class of decomposable measures using fuzzy pseudometrics., Fuzzy Sets and Systems 222 (2013), 33-44. Zbl1284.28017MR3053889
  35. Rodríguez-López, J., Romaguera, S., The Hausdorff fuzzy metric on compact sets., Fuzzy Sets and Systems 147 (2004), 273-283. Zbl1069.54009MR2089291
  36. Romaguera, S., Sanchis, M., 10.1016/S0165-0114(00)00085-3, Fuzzy Sets and Systems 124 (2001), 109-115. Zbl0994.54007MR1859783DOI10.1016/S0165-0114(00)00085-3
  37. Shi, F. G., Zheng, C. Y., 10.1016/j.fss.2004.02.003, Fuzzy Sets and Systems 149 (2005), 455-471. Zbl1070.54007MR2111885DOI10.1016/j.fss.2004.02.003
  38. Trillas, E., 10.1016/j.ins.2005.03.008, Inf. Sci. 176 (2006), 1463-1487. Zbl1098.03066MR2225325DOI10.1016/j.ins.2005.03.008
  39. Zadeh, L. A., 10.1016/S0019-9958(65)90241-X, Inform. Control 8 (1965), 338-353. Zbl0942.00007MR0219427DOI10.1016/S0019-9958(65)90241-X
  40. Zhang, W., Qiu, D., Li, Z., Xiong, G., 10.1155/2012/890678, J. Appl. Math. Volume 2012, Article ID 890678, 18 pages. Zbl1235.54057MR2880834DOI10.1155/2012/890678

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.