On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric
Dong Qiu; Chongxia Lu; Shuai Deng; Liang Wang
Kybernetika (2014)
- Volume: 50, Issue: 5, page 758-773
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topQiu, Dong, et al. "On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric." Kybernetika 50.5 (2014): 758-773. <http://eudml.org/doc/262158>.
@article{Qiu2014,
abstract = {In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.},
author = {Qiu, Dong, Lu, Chongxia, Deng, Shuai, Wang, Liang},
journal = {Kybernetika},
keywords = {Hausdorff metric; hyperspace; triangular norms; stationary fuzzy metric; Hausdorff metric; hyperspace; triangular norms; stationary fuzzy metric},
language = {eng},
number = {5},
pages = {758-773},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric},
url = {http://eudml.org/doc/262158},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Qiu, Dong
AU - Lu, Chongxia
AU - Deng, Shuai
AU - Wang, Liang
TI - On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 5
SP - 758
EP - 773
AB - In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.
LA - eng
KW - Hausdorff metric; hyperspace; triangular norms; stationary fuzzy metric; Hausdorff metric; hyperspace; triangular norms; stationary fuzzy metric
UR - http://eudml.org/doc/262158
ER -
References
top- Adibi, H., Cho, Y. J., O'Regan, D., Saadati, R., 10.1016/j.amc.2006.04.045, Appl. Math. Comput. 182 (2006), 820-828. MR2292091DOI10.1016/j.amc.2006.04.045
- Aubin, J. P., Ekeland, I., Applied Nonlinear Analysis., Wiley, New York 1984. Zbl1115.47049MR0749753
- Azé, D., Corvellec, J. N., Lucchetti, R. E., Variational pairs and applications to stability in nonsmooth analysis., Nonlinear Anal. Theory Methods Appl. 49 (2002), 643-670. Zbl1035.49014MR1894302
- Beer, G., Topologies on Closed and Closed Convex Sets., Kluwer Academic Publishers, Dordrecht 1993. Zbl0792.54008MR1269778
- Chang, S. S., Cho, Y. J., Lee, B. S., Jung, J. S., Kang, S. M., Coincidence point and minimization theorems in fuzzy metric spaces., Fuzzy Sets and Systems 88 (1997), 119-128. MR1449500
- Cho, Y. J., Petrot, N., Existence theorems for fixed fuzzy points with closed -cut sets in complete metric spaces., Fuzzy Sets and Systems 26 (2011), 115-124. Zbl1207.54055MR2789801
- Deng, Z. K., 10.1016/0022-247X(82)90255-4, J. Math. Anal. Appl. 86 (1982), 74-95. Zbl0589.54006DOI10.1016/0022-247X(82)90255-4
- Engelking, R., General Topology., PWN-Polish Science Publishers, Warsaw 1977. Zbl1281.54001MR0500780
- George, A., Veeramani, P., 10.1016/0165-0114(94)90162-7, Fuzzy Sets and Systems 64 (1994), 395-399. Zbl0843.54014MR1289545DOI10.1016/0165-0114(94)90162-7
- Ghil, B. M., Kim, Y. K., 10.1016/S0020-0255(03)00180-4, Inform. Sci. 157 (2003), 155-165. Zbl1051.54004MR2023712DOI10.1016/S0020-0255(03)00180-4
- Gregori, V., Sapena, A., On fixed point theorem in fuzzy metric spaces., Fuzzy Sets and Systems 125 (2002), 245-252. MR1880341
- Gregori, V., Romaguera, S., On completion of fuzzy metric spaces., Fuzzy Sets and Systems 130 (2002), 399-404. Zbl1010.54002MR1928435
- Gregori, V., Romaguera, S., 10.1016/S0165-0114(03)00161-1, Fuzzy Sets and Systems 144 (2004), 411-420. Zbl1057.54010MR2061403DOI10.1016/S0165-0114(03)00161-1
- Gregori, V., Morillas, S., Sapena, A., Examples of fuzzy metrics and applications., Fuzzy Sets and Systems 170 (2011), 95-111. Zbl1210.94016MR2775611
- Hausdorff, F., Set Theory., Chelsea, New York 1957. Zbl1149.01022MR0086020
- Hop, N.V., 10.1016/j.ins.2006.12.001, Inform. Sci. 177 (2007), 1977-1991. Zbl1128.90061MR2303963DOI10.1016/j.ins.2006.12.001
- Hop, N. V., 10.1016/j.ins.2007.01.032, Inform. Sci. 177 (2007), 2971-2984. Zbl1178.90363MR2333449DOI10.1016/j.ins.2007.01.032
- Joo, S. Y., Kim, Y. K., 10.1016/S0165-0114(98)00185-7, Fuzzy Sets and Systems 111 (2000), 497-501. Zbl0961.54024MR1748559DOI10.1016/S0165-0114(98)00185-7
- Joo, S. Y., Kim, Y. K., 10.1006/jmaa.2000.6820, J. Math. Anal. Appl. 246 (2000), 576-590. Zbl0986.54012MR1761949DOI10.1006/jmaa.2000.6820
- Kaleva, O., Seikkala, S., 10.1016/0165-0114(84)90069-1, Fuzzy Sets and Systems 12 (1984), 215-229. Zbl0558.54003MR0740095DOI10.1016/0165-0114(84)90069-1
- Kaleva, O., 10.1016/0165-0114(85)90006-5, Fuzzy Sets and Systems 17 (1985), 53-65. Zbl0584.54004MR0808463DOI10.1016/0165-0114(85)90006-5
- Kaleva, O., 10.1016/0165-0114(87)90029-7, Fuzzy Sets and Systems 24 (1987), 301-317. Zbl1100.34500MR0919058DOI10.1016/0165-0114(87)90029-7
- Kim, Y. K., 10.1006/jmaa.2001.7658, J. Math. Anal. Appl. 264 (2001), 122-132. Zbl1065.54001MR1868332DOI10.1006/jmaa.2001.7658
- Kim, Y. K., Compactness and convexity on the space of fuzzy sets II., Nonlinear Anal. Theory Methods Appl. 57 (2004), 639-653. Zbl1065.54001MR2067725
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
- Kramosil, I., Michálek, J., Fuzzy metric and statistical metric spaces., Kybernetika 11 (1975), 326-334. MR0410633
- Matheron, G., Random Sets and Integral Geometry., Wiley, New York 1975. Zbl0321.60009MR0385969
- Mordukhovich, B. S., Shao, Y., 10.1016/S0362-546X(96)00082-X, Nonlinear Anal. Theory Methods Appl. 29 (1997), 605-626. Zbl0879.58006MR1452749DOI10.1016/S0362-546X(96)00082-X
- Jr, S. B. Nadler, 10.2140/pjm.1969.30.475, Pacific J. Math. 30 (1969), 475-487. MR0254828DOI10.2140/pjm.1969.30.475
- Puri, M. L., Ralescu, D. A., 10.1016/0022-247X(86)90093-4, J. Math. Anal. Appl. 114 (1986), 409-422. Zbl0605.60038MR0833596DOI10.1016/0022-247X(86)90093-4
- Qiu, D., Zhang, W., On Decomposable Measures Induced by Metrics., J. Appl. Math. Volume 2012, Article ID 701206, 8 pages. Zbl1252.28001MR2948100
- Qiu, D., Zhang, W., The strongest t-norm for fuzzy metric spaces., Kybernetika 49 (2013), 141-148. Zbl1264.54020MR3097387
- Qiu, D., Zhang, W., Li, C., 10.1080/03081079.2012.758879, Int. J. Gen. Syst. 42 (2013), 395-404. Zbl1280.28018MR3022374DOI10.1080/03081079.2012.758879
- Qiu, D., Zhang, W., Li, C., Extension of a class of decomposable measures using fuzzy pseudometrics., Fuzzy Sets and Systems 222 (2013), 33-44. Zbl1284.28017MR3053889
- Rodríguez-López, J., Romaguera, S., The Hausdorff fuzzy metric on compact sets., Fuzzy Sets and Systems 147 (2004), 273-283. Zbl1069.54009MR2089291
- Romaguera, S., Sanchis, M., 10.1016/S0165-0114(00)00085-3, Fuzzy Sets and Systems 124 (2001), 109-115. Zbl0994.54007MR1859783DOI10.1016/S0165-0114(00)00085-3
- Shi, F. G., Zheng, C. Y., 10.1016/j.fss.2004.02.003, Fuzzy Sets and Systems 149 (2005), 455-471. Zbl1070.54007MR2111885DOI10.1016/j.fss.2004.02.003
- Trillas, E., 10.1016/j.ins.2005.03.008, Inf. Sci. 176 (2006), 1463-1487. Zbl1098.03066MR2225325DOI10.1016/j.ins.2005.03.008
- Zadeh, L. A., 10.1016/S0019-9958(65)90241-X, Inform. Control 8 (1965), 338-353. Zbl0942.00007MR0219427DOI10.1016/S0019-9958(65)90241-X
- Zhang, W., Qiu, D., Li, Z., Xiong, G., 10.1155/2012/890678, J. Appl. Math. Volume 2012, Article ID 890678, 18 pages. Zbl1235.54057MR2880834DOI10.1155/2012/890678
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.