On iteration digraph and zero-divisor graph of the ring
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 3, page 611-628
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJu, Tengxia, and Wu, Meiyun. "On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$." Czechoslovak Mathematical Journal 64.3 (2014): 611-628. <http://eudml.org/doc/262167>.
@article{Ju2014,
abstract = {In the first part, we assign to each positive integer $n$ a digraph $\Gamma (n,5),$ whose set of vertices consists of elements of the ring $\mathbb \{Z\}_n=\lbrace 0,1,\cdots ,n-1\rbrace $ with the addition and the multiplication operations modulo $n,$ and for which there is a directed edge from $a$ to $b$ if and only if $a^5\equiv b\hspace\{4.44443pt\}(\@mod \; n)$. Associated with $\Gamma (n,5)$ are two disjoint subdigraphs: $\Gamma _1(n,5)$ and $\Gamma _2(n,5)$ whose union is $\Gamma (n,5).$ The vertices of $\Gamma _1(n,5)$ are coprime to $n,$ and the vertices of $\Gamma _2(n,5)$ are not coprime to $n.$ In this part, we study the structure of $\Gamma (n,5)$ in detail. In the second part, we investigate the zero-divisor graph $G(\mathbb \{Z\}_n)$ of the ring $\mathbb \{Z\}_n.$ Its vertex- and edge-connectivity are discussed.},
author = {Ju, Tengxia, Wu, Meiyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {iteration digraph; zero-divisor graph; tree; cycle; vertex-connectivity; iteration digraph; zero-divisor graph; tree; cycle; vertex-connectivity},
language = {eng},
number = {3},
pages = {611-628},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On iteration digraph and zero-divisor graph of the ring $\mathbb \{Z\}_n$},
url = {http://eudml.org/doc/262167},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Ju, Tengxia
AU - Wu, Meiyun
TI - On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 3
SP - 611
EP - 628
AB - In the first part, we assign to each positive integer $n$ a digraph $\Gamma (n,5),$ whose set of vertices consists of elements of the ring $\mathbb {Z}_n=\lbrace 0,1,\cdots ,n-1\rbrace $ with the addition and the multiplication operations modulo $n,$ and for which there is a directed edge from $a$ to $b$ if and only if $a^5\equiv b\hspace{4.44443pt}(\@mod \; n)$. Associated with $\Gamma (n,5)$ are two disjoint subdigraphs: $\Gamma _1(n,5)$ and $\Gamma _2(n,5)$ whose union is $\Gamma (n,5).$ The vertices of $\Gamma _1(n,5)$ are coprime to $n,$ and the vertices of $\Gamma _2(n,5)$ are not coprime to $n.$ In this part, we study the structure of $\Gamma (n,5)$ in detail. In the second part, we investigate the zero-divisor graph $G(\mathbb {Z}_n)$ of the ring $\mathbb {Z}_n.$ Its vertex- and edge-connectivity are discussed.
LA - eng
KW - iteration digraph; zero-divisor graph; tree; cycle; vertex-connectivity; iteration digraph; zero-divisor graph; tree; cycle; vertex-connectivity
UR - http://eudml.org/doc/262167
ER -
References
top- Akbari, S., Mohammadian, A., 10.1016/S0021-8693(03)00435-6, J. Algebra 274 (2004), 847-855. (2004) Zbl1085.13011MR2043378DOI10.1016/S0021-8693(03)00435-6
- Akhtar, R., Lee, L., Connectivity of the zero-divisor graph of finite rings, https//www.researchgate.net/publication/228569713.
- Beck, I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), 208-226. (1988) Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
- Carmichael, R. D., 10.1090/S0002-9904-1910-01892-9, Amer. Math. Soc. Bull. (2) 16 (1910), 232-238. (1910) MR1558896DOI10.1090/S0002-9904-1910-01892-9
- Ireland, K., Rosen, M., A Classical Introduction to Modern Number Theory, 2nd Graduate Texts in Mathematics 84 Springer, New York (1990). (1990) Zbl0712.11001MR1070716
- Křížek, M., Luca, F., Somer, L., 17 Lectures on Fermat Numbers. From Number Theory to Geometry, CMS Books in Mathematics 9 Springer, New York (2001). (2001) Zbl1010.11002MR1866957
- Skowronek-Kaziów, J., 10.1016/j.ipl.2008.05.002, Inf. Process. Lett. 108 (2008), 165-169. (2008) MR2452147DOI10.1016/j.ipl.2008.05.002
- Somer, L., Křížek, M., 10.1023/B:CMAJ.0000042385.93571.58, Czech. Math. J. 54 (2004), 465-485. (2004) MR2059267DOI10.1023/B:CMAJ.0000042385.93571.58
- Somer, L., Křížek, M., 10.1016/j.disc.2005.12.026, Discrete Math. 306 (2006), 2174-2185. (2006) MR2255611DOI10.1016/j.disc.2005.12.026
- Somer, L., Křížek, M., 10.1007/s10587-011-0079-x, Czech. Math. J. 61 (2011), 337-358. (2011) Zbl1249.11006MR2905408DOI10.1007/s10587-011-0079-x
- Vasiga, T., Shallit, J., 10.1016/S0012-365X(03)00158-4, Discrete Math. 277 (2004), 219-240. (2004) Zbl1045.11086MR2033734DOI10.1016/S0012-365X(03)00158-4
- Wilson, B., Power digraphs modulo , Fibonacci Q. 36 (1998), 229-239. (1998) Zbl0936.05049MR1627384
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.