The structure of digraphs associated with the congruence
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 337-358
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSomer, Lawrence, and Křížek, Michal. "The structure of digraphs associated with the congruence $x^k\equiv y \hspace{4.44443pt}(\@mod \; n)$." Czechoslovak Mathematical Journal 61.2 (2011): 337-358. <http://eudml.org/doc/196799>.
@article{Somer2011,
abstract = {We assign to each pair of positive integers $n$ and $k\ge 2$ a digraph $G(n,k)$ whose set of vertices is $H=\lbrace 0,1,\dots ,n-1\rbrace $ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\hspace\{4.44443pt\}(\@mod \; n)$. We investigate the structure of $G(n,k)$. In particular, upper bounds are given for the longest cycle in $G(n,k)$. We find subdigraphs of $G(n,k)$, called fundamental constituents of $G(n,k)$, for which all trees attached to cycle vertices are isomorphic.},
author = {Somer, Lawrence, Křížek, Michal},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sophie Germain primes; Fermat primes; primitive roots; Chinese Remainder Theorem; congruence; digraphs; Sophie Germain prime; Fermat prime; primitive root; Chinese Remainder Theorem; congruence; digraph},
language = {eng},
number = {2},
pages = {337-358},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The structure of digraphs associated with the congruence $x^k\equiv y \hspace\{4.44443pt\}(\@mod \; n)$},
url = {http://eudml.org/doc/196799},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Somer, Lawrence
AU - Křížek, Michal
TI - The structure of digraphs associated with the congruence $x^k\equiv y \hspace{4.44443pt}(\@mod \; n)$
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 337
EP - 358
AB - We assign to each pair of positive integers $n$ and $k\ge 2$ a digraph $G(n,k)$ whose set of vertices is $H=\lbrace 0,1,\dots ,n-1\rbrace $ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\hspace{4.44443pt}(\@mod \; n)$. We investigate the structure of $G(n,k)$. In particular, upper bounds are given for the longest cycle in $G(n,k)$. We find subdigraphs of $G(n,k)$, called fundamental constituents of $G(n,k)$, for which all trees attached to cycle vertices are isomorphic.
LA - eng
KW - Sophie Germain primes; Fermat primes; primitive roots; Chinese Remainder Theorem; congruence; digraphs; Sophie Germain prime; Fermat prime; primitive root; Chinese Remainder Theorem; congruence; digraph
UR - http://eudml.org/doc/196799
ER -
References
top- Carlip, W., Mincheva, M., 10.1007/s10587-008-0009-8, Czech. Math. J. 58 (2008), 131-145. (2008) MR2402530DOI10.1007/s10587-008-0009-8
- Chou, W.-S., Shparlinski, I. E., 10.1016/j.jnt.2004.04.005, J. Number Theory 107 (2004), 345-356. (2004) Zbl1060.11059MR2072394DOI10.1016/j.jnt.2004.04.005
- Friendlander, J. B., Pomerance, C., Shparlinski, I. E., Period of the power generator and small values of Carmichael's function, Math. Comput. 70 (2001), 1591-1605; Corrigendum ibid. 71 (2002), 1803-1806. (2002) MR1836921
- Hartnell, B., Rall, D. F., Domination in Cartesian products: Vizing's conjecture, Domination in Graphs. Advanced Topics Dekker New York T. Waynes, S. T. Hedetniemi, P. J. Slater (1998), 163-189. (1998) Zbl0890.05035MR1605692
- Křížek, M., Luca, F., Somer, L., 17 Lectures on Fermat Numbers: From Number Theory to Geometry. CMS Books in Mathematics, Vol. 9, Springer New York (2001). (2001) MR1866957
- Kurlberg, P., Pomerance, C., On the periods of the linear congruential and power generators, Acta Arith. (2005), 119 149-169. (2005) Zbl1080.11059MR2167719
- Lucheta, C., Miller, E., Reiter, C., Digraphs from powers modulo , Fibonacci Q. 34 (1996), 226-239. (1996) Zbl0855.05067MR1390409
- Martin, G., Pomerance, C., The iterated Carmichael -function and the number of cycles of the power generator, Acta Arith. (2005), 118 305-335. (2005) Zbl1109.11046MR2165548
- Niven, I., Zuckerman, H. S., Montgomery, H. L., An Introduction to the Theory of Numbers. 5th ed, John Wiley & Sons New York (1991). (1991) Zbl0742.11001MR1083765
- Somer, L., Křížek, M., 10.1023/B:CMAJ.0000042385.93571.58, Czech. Math. J. 54 (2004), 465-485. (2004) MR2059267DOI10.1023/B:CMAJ.0000042385.93571.58
- Somer, L., Křížek, M., 10.1016/j.disc.2005.12.026, Discrete Math. 306 (2006), 2174-2185. (2006) MR2255611DOI10.1016/j.disc.2005.12.026
- Somer, L., Křížek, M., On semiregular digraphs of the congruence , Commentat. Math. Univ. Carol. 48 (2007), 41-58. (2007) MR2338828
- Somer, L., Křížek, M., 10.1016/j.disc.2008.04.009, Discrete Math. 309 (2009), 1999-2009. (2009) MR2510326DOI10.1016/j.disc.2008.04.009
- Szalay, L., A discrete iteration in number theory, Berzseneyi Dániel Tanárk. Föisk. Tud. Közl., Termtud. 8 (1992), 71-91 Hungarian. (1992) Zbl0801.11011
- Vasiga, T., Shallit, J., 10.1016/S0012-365X(03)00158-4, Discrete Math. 277 (2004), 219-240. (2004) Zbl1045.11086MR2033734DOI10.1016/S0012-365X(03)00158-4
- Wilson, B., Power digraphs modulo , Fibonacci Q. 36 (1998), 229-239. (1998) Zbl0936.05049MR1627384
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.