The structure of digraphs associated with the congruence x k y ( mod n )

Lawrence Somer; Michal Křížek

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 2, page 337-358
  • ISSN: 0011-4642

Abstract

top
We assign to each pair of positive integers n and k 2 a digraph G ( n , k ) whose set of vertices is H = { 0 , 1 , , n - 1 } and for which there is a directed edge from a H to b H if a k b ( mod n ) . We investigate the structure of G ( n , k ) . In particular, upper bounds are given for the longest cycle in G ( n , k ) . We find subdigraphs of G ( n , k ) , called fundamental constituents of G ( n , k ) , for which all trees attached to cycle vertices are isomorphic.

How to cite

top

Somer, Lawrence, and Křížek, Michal. "The structure of digraphs associated with the congruence $x^k\equiv y \hspace{4.44443pt}(\@mod \; n)$." Czechoslovak Mathematical Journal 61.2 (2011): 337-358. <http://eudml.org/doc/196799>.

@article{Somer2011,
abstract = {We assign to each pair of positive integers $n$ and $k\ge 2$ a digraph $G(n,k)$ whose set of vertices is $H=\lbrace 0,1,\dots ,n-1\rbrace $ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\hspace\{4.44443pt\}(\@mod \; n)$. We investigate the structure of $G(n,k)$. In particular, upper bounds are given for the longest cycle in $G(n,k)$. We find subdigraphs of $G(n,k)$, called fundamental constituents of $G(n,k)$, for which all trees attached to cycle vertices are isomorphic.},
author = {Somer, Lawrence, Křížek, Michal},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sophie Germain primes; Fermat primes; primitive roots; Chinese Remainder Theorem; congruence; digraphs; Sophie Germain prime; Fermat prime; primitive root; Chinese Remainder Theorem; congruence; digraph},
language = {eng},
number = {2},
pages = {337-358},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The structure of digraphs associated with the congruence $x^k\equiv y \hspace\{4.44443pt\}(\@mod \; n)$},
url = {http://eudml.org/doc/196799},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Somer, Lawrence
AU - Křížek, Michal
TI - The structure of digraphs associated with the congruence $x^k\equiv y \hspace{4.44443pt}(\@mod \; n)$
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 337
EP - 358
AB - We assign to each pair of positive integers $n$ and $k\ge 2$ a digraph $G(n,k)$ whose set of vertices is $H=\lbrace 0,1,\dots ,n-1\rbrace $ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\hspace{4.44443pt}(\@mod \; n)$. We investigate the structure of $G(n,k)$. In particular, upper bounds are given for the longest cycle in $G(n,k)$. We find subdigraphs of $G(n,k)$, called fundamental constituents of $G(n,k)$, for which all trees attached to cycle vertices are isomorphic.
LA - eng
KW - Sophie Germain primes; Fermat primes; primitive roots; Chinese Remainder Theorem; congruence; digraphs; Sophie Germain prime; Fermat prime; primitive root; Chinese Remainder Theorem; congruence; digraph
UR - http://eudml.org/doc/196799
ER -

References

top
  1. Carlip, W., Mincheva, M., 10.1007/s10587-008-0009-8, Czech. Math. J. 58 (2008), 131-145. (2008) MR2402530DOI10.1007/s10587-008-0009-8
  2. Chou, W.-S., Shparlinski, I. E., 10.1016/j.jnt.2004.04.005, J. Number Theory 107 (2004), 345-356. (2004) Zbl1060.11059MR2072394DOI10.1016/j.jnt.2004.04.005
  3. Friendlander, J. B., Pomerance, C., Shparlinski, I. E., Period of the power generator and small values of Carmichael's function, Math. Comput. 70 (2001), 1591-1605; Corrigendum ibid. 71 (2002), 1803-1806. (2002) MR1836921
  4. Hartnell, B., Rall, D. F., Domination in Cartesian products: Vizing's conjecture, Domination in Graphs. Advanced Topics Dekker New York T. Waynes, S. T. Hedetniemi, P. J. Slater (1998), 163-189. (1998) Zbl0890.05035MR1605692
  5. Křížek, M., Luca, F., Somer, L., 17 Lectures on Fermat Numbers: From Number Theory to Geometry. CMS Books in Mathematics, Vol. 9, Springer New York (2001). (2001) MR1866957
  6. Kurlberg, P., Pomerance, C., On the periods of the linear congruential and power generators, Acta Arith. (2005), 119 149-169. (2005) Zbl1080.11059MR2167719
  7. Lucheta, C., Miller, E., Reiter, C., Digraphs from powers modulo p , Fibonacci Q. 34 (1996), 226-239. (1996) Zbl0855.05067MR1390409
  8. Martin, G., Pomerance, C., The iterated Carmichael λ -function and the number of cycles of the power generator, Acta Arith. (2005), 118 305-335. (2005) Zbl1109.11046MR2165548
  9. Niven, I., Zuckerman, H. S., Montgomery, H. L., An Introduction to the Theory of Numbers. 5th ed, John Wiley &amp; Sons New York (1991). (1991) Zbl0742.11001MR1083765
  10. Somer, L., Křížek, M., 10.1023/B:CMAJ.0000042385.93571.58, Czech. Math. J. 54 (2004), 465-485. (2004) MR2059267DOI10.1023/B:CMAJ.0000042385.93571.58
  11. Somer, L., Křížek, M., 10.1016/j.disc.2005.12.026, Discrete Math. 306 (2006), 2174-2185. (2006) MR2255611DOI10.1016/j.disc.2005.12.026
  12. Somer, L., Křížek, M., On semiregular digraphs of the congruence x k y ( mod n ) , Commentat. Math. Univ. Carol. 48 (2007), 41-58. (2007) MR2338828
  13. Somer, L., Křížek, M., 10.1016/j.disc.2008.04.009, Discrete Math. 309 (2009), 1999-2009. (2009) MR2510326DOI10.1016/j.disc.2008.04.009
  14. Szalay, L., A discrete iteration in number theory, Berzseneyi Dániel Tanárk. Föisk. Tud. Közl., Termtud. 8 (1992), 71-91 Hungarian. (1992) Zbl0801.11011
  15. Vasiga, T., Shallit, J., 10.1016/S0012-365X(03)00158-4, Discrete Math. 277 (2004), 219-240. (2004) Zbl1045.11086MR2033734DOI10.1016/S0012-365X(03)00158-4
  16. Wilson, B., Power digraphs modulo n , Fibonacci Q. 36 (1998), 229-239. (1998) Zbl0936.05049MR1627384

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.