Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle

Josef Janyška

Archivum Mathematicum (2014)

  • Volume: 050, Issue: 5, page 297-316
  • ISSN: 0044-8753

Abstract

top
The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give the explicit description of such hidden symmetries.

How to cite

top

Janyška, Josef. "Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle." Archivum Mathematicum 050.5 (2014): 297-316. <http://eudml.org/doc/262181>.

@article{Janyška2014,
abstract = {The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give the explicit description of such hidden symmetries.},
author = {Janyška, Josef},
journal = {Archivum Mathematicum},
keywords = {phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field; phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field},
language = {eng},
number = {5},
pages = {297-316},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle},
url = {http://eudml.org/doc/262181},
volume = {050},
year = {2014},
}

TY - JOUR
AU - Janyška, Josef
TI - Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 5
SP - 297
EP - 316
AB - The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give the explicit description of such hidden symmetries.
LA - eng
KW - phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field; phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field
UR - http://eudml.org/doc/262181
ER -

References

top
  1. Crampin, M., 10.1016/0034-4877(84)90069-7, Reports Math. Phys. 20 (1984), 31–40. (1984) Zbl0551.58019MR0761328DOI10.1016/0034-4877(84)90069-7
  2. de Leon, M., Tuynman, G.M., 10.1016/0393-0440(96)00047-2, J. Geom. Phys. 20 (1996), 77–86. (1996) Zbl0861.53026MR1407405DOI10.1016/0393-0440(96)00047-2
  3. Gielen, S., Wise, D.K., 10.1063/1.4802878, J. Math. Phys. 54 (2013), 29pp., 052501. (2013) Zbl1285.83005MR3098929DOI10.1063/1.4802878
  4. Iwai, T., Symmetries in relativistic dynamics of a charged particle, Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343. (1976) Zbl0339.53039MR0434248
  5. Janyška, J., Special phase functions and phase infinitesimal symmetries in classical general relativity, AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2012, pp. 135–140. (2012) 
  6. Janyška, J., 10.1142/S0219887814600202, Int. J. Geom. Methods Mod. Phys. 11 (2014), 31pp., 1460020. (2014) MR3249642DOI10.1142/S0219887814600202
  7. Janyška, J., Modugno, M., Classical particle phase space in general relativity, Differential Geometry and Applications, Proc. Conf., Aug. 28 – Sept. 1, 1995, Brno, Czech Republic, Masaryk University, Brno, 1996, pp. 573–602. (1996) Zbl0862.53024MR1406377
  8. Janyška, J., Modugno, M., 10.1142/S021988780800303X, Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. (2008) Zbl1160.53008MR2445392DOI10.1142/S021988780800303X
  9. Janyška, J., Modugno, M., 10.1016/j.matpur.2008.09.007, J. Math. Pures Appl. 9 (2009), 211–232. (2009) Zbl1163.53051MR2498755DOI10.1016/j.matpur.2008.09.007
  10. Janyška, J., Modugno, M., Vitolo, R., 10.1007/s10440-009-9505-6, Acta Appl. Math. 110 (2010), 1249–1276. (2010) Zbl1208.15021MR2639169DOI10.1007/s10440-009-9505-6
  11. Janyška, J., Vitolo, R., 10.1088/1751-8113/45/48/485205, J. Phys. A: Math. Theor. 45 (2012), 28pp., 485205. (2012) MR2998421DOI10.1088/1751-8113/45/48/485205
  12. Libermann, P., Marle, Ch.M., Symplectic Geometry and Analytical Mechanics, Reidel Publ., Dordrecht, 1987. (1987) Zbl0643.53002MR0882548
  13. Lichnerowicz, A., Les varietés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. 57 (1978), 453–488. (1978) Zbl0407.53025MR0524629
  14. Manno, G., Vitolo, R., Relativistic mechanics, contact manifolds and symmetries, Note Mat. 23 (2004/2005), 157–171. (2004) MR2141115
  15. Michor, P.W., Dubois-Violette, M., 10.1016/0019-3577(95)98200-U, Indagationes Math. N.S. 6 (1995), 51–66. (1995) Zbl0844.58002MR1324437DOI10.1016/0019-3577(95)98200-U
  16. Olver, P., 10.1007/978-1-4684-0274-2_2, Graduate Texts in Mathematics, vol. 107, Springer, 1986. (1986) Zbl0588.22001MR0836734DOI10.1007/978-1-4684-0274-2_2
  17. Schouten, J.A., Ueber Differentialkomitanten zweier kontravarianter Grössen, Nederl. Akad. Wetensch., Proc. 43 (1940), 1160–1170. (1940) MR0003326
  18. Sommers, P., 10.1063/1.1666395, J. Math. Phys. 14 (1973), 787–790. (1973) MR0329558DOI10.1063/1.1666395
  19. Vaisman, I., Lectures on the Geometry of Poisson Manifolds, Birkhäuser Verlag, Basel-Boston-Berlin, 1994. (1994) Zbl0810.53019MR1269545
  20. Vinogradov, A.M., An informal introduction to the geometry of jet spaces, Rend. Seminari Fac. Sci. Univ. Cagliari 48 (1988), 301–333. (1988) MR1122861
  21. Vitolo, R., 10.1023/A:1007624902983, Lett. Math. Phys. 51 (2000), 119–133. (2000) Zbl0977.83009MR1774641DOI10.1023/A:1007624902983
  22. Woodhouse, N.M.J., 10.1007/BF01609055, Commun. Math. Phys. 44 (1975), 9–38. (1975) Zbl0309.58012MR0406368DOI10.1007/BF01609055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.