Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle
Archivum Mathematicum (2014)
- Volume: 050, Issue: 5, page 297-316
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topJanyška, Josef. "Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle." Archivum Mathematicum 050.5 (2014): 297-316. <http://eudml.org/doc/262181>.
@article{Janyška2014,
abstract = {The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give the explicit description of such hidden symmetries.},
author = {Janyška, Josef},
journal = {Archivum Mathematicum},
keywords = {phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field; phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field},
language = {eng},
number = {5},
pages = {297-316},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle},
url = {http://eudml.org/doc/262181},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Janyška, Josef
TI - Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 5
SP - 297
EP - 316
AB - The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give the explicit description of such hidden symmetries.
LA - eng
KW - phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field; phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field
UR - http://eudml.org/doc/262181
ER -
References
top- Crampin, M., 10.1016/0034-4877(84)90069-7, Reports Math. Phys. 20 (1984), 31–40. (1984) Zbl0551.58019MR0761328DOI10.1016/0034-4877(84)90069-7
- de Leon, M., Tuynman, G.M., 10.1016/0393-0440(96)00047-2, J. Geom. Phys. 20 (1996), 77–86. (1996) Zbl0861.53026MR1407405DOI10.1016/0393-0440(96)00047-2
- Gielen, S., Wise, D.K., 10.1063/1.4802878, J. Math. Phys. 54 (2013), 29pp., 052501. (2013) Zbl1285.83005MR3098929DOI10.1063/1.4802878
- Iwai, T., Symmetries in relativistic dynamics of a charged particle, Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343. (1976) Zbl0339.53039MR0434248
- Janyška, J., Special phase functions and phase infinitesimal symmetries in classical general relativity, AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2012, pp. 135–140. (2012)
- Janyška, J., 10.1142/S0219887814600202, Int. J. Geom. Methods Mod. Phys. 11 (2014), 31pp., 1460020. (2014) MR3249642DOI10.1142/S0219887814600202
- Janyška, J., Modugno, M., Classical particle phase space in general relativity, Differential Geometry and Applications, Proc. Conf., Aug. 28 – Sept. 1, 1995, Brno, Czech Republic, Masaryk University, Brno, 1996, pp. 573–602. (1996) Zbl0862.53024MR1406377
- Janyška, J., Modugno, M., 10.1142/S021988780800303X, Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. (2008) Zbl1160.53008MR2445392DOI10.1142/S021988780800303X
- Janyška, J., Modugno, M., 10.1016/j.matpur.2008.09.007, J. Math. Pures Appl. 9 (2009), 211–232. (2009) Zbl1163.53051MR2498755DOI10.1016/j.matpur.2008.09.007
- Janyška, J., Modugno, M., Vitolo, R., 10.1007/s10440-009-9505-6, Acta Appl. Math. 110 (2010), 1249–1276. (2010) Zbl1208.15021MR2639169DOI10.1007/s10440-009-9505-6
- Janyška, J., Vitolo, R., 10.1088/1751-8113/45/48/485205, J. Phys. A: Math. Theor. 45 (2012), 28pp., 485205. (2012) MR2998421DOI10.1088/1751-8113/45/48/485205
- Libermann, P., Marle, Ch.M., Symplectic Geometry and Analytical Mechanics, Reidel Publ., Dordrecht, 1987. (1987) Zbl0643.53002MR0882548
- Lichnerowicz, A., Les varietés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. 57 (1978), 453–488. (1978) Zbl0407.53025MR0524629
- Manno, G., Vitolo, R., Relativistic mechanics, contact manifolds and symmetries, Note Mat. 23 (2004/2005), 157–171. (2004) MR2141115
- Michor, P.W., Dubois-Violette, M., 10.1016/0019-3577(95)98200-U, Indagationes Math. N.S. 6 (1995), 51–66. (1995) Zbl0844.58002MR1324437DOI10.1016/0019-3577(95)98200-U
- Olver, P., 10.1007/978-1-4684-0274-2_2, Graduate Texts in Mathematics, vol. 107, Springer, 1986. (1986) Zbl0588.22001MR0836734DOI10.1007/978-1-4684-0274-2_2
- Schouten, J.A., Ueber Differentialkomitanten zweier kontravarianter Grössen, Nederl. Akad. Wetensch., Proc. 43 (1940), 1160–1170. (1940) MR0003326
- Sommers, P., 10.1063/1.1666395, J. Math. Phys. 14 (1973), 787–790. (1973) MR0329558DOI10.1063/1.1666395
- Vaisman, I., Lectures on the Geometry of Poisson Manifolds, Birkhäuser Verlag, Basel-Boston-Berlin, 1994. (1994) Zbl0810.53019MR1269545
- Vinogradov, A.M., An informal introduction to the geometry of jet spaces, Rend. Seminari Fac. Sci. Univ. Cagliari 48 (1988), 301–333. (1988) MR1122861
- Vitolo, R., 10.1023/A:1007624902983, Lett. Math. Phys. 51 (2000), 119–133. (2000) Zbl0977.83009MR1774641DOI10.1023/A:1007624902983
- Woodhouse, N.M.J., 10.1007/BF01609055, Commun. Math. Phys. 44 (1975), 9–38. (1975) Zbl0309.58012MR0406368DOI10.1007/BF01609055
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.