Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations
Xuezhu Li; Milan Medveď; Jin Rong Wang
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 2, page 85-100
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topLi, Xuezhu, Medveď, Milan, and Wang, Jin Rong. "Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.2 (2014): 85-100. <http://eudml.org/doc/262208>.
@article{Li2014,
abstract = {In this paper, generalized boundary value problems for nonlinear fractional Langevin equations is studied. Some new existence results of solutions in the balls with different radius are obtained when the nonlinear term satisfies nonlinear Lipschitz and linear growth conditions. Finally, two examples are given to illustrate the results.},
author = {Li, Xuezhu, Medveď, Milan, Wang, Jin Rong},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Nonlinear fractional Langevin equations; boundary value problems; existence; fixed point theorem; nonlinear fractional Langevin equations; boundary value problems; existence; fixed point theorem},
language = {eng},
number = {2},
pages = {85-100},
publisher = {Palacký University Olomouc},
title = {Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations},
url = {http://eudml.org/doc/262208},
volume = {53},
year = {2014},
}
TY - JOUR
AU - Li, Xuezhu
AU - Medveď, Milan
AU - Wang, Jin Rong
TI - Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 2
SP - 85
EP - 100
AB - In this paper, generalized boundary value problems for nonlinear fractional Langevin equations is studied. Some new existence results of solutions in the balls with different radius are obtained when the nonlinear term satisfies nonlinear Lipschitz and linear growth conditions. Finally, two examples are given to illustrate the results.
LA - eng
KW - Nonlinear fractional Langevin equations; boundary value problems; existence; fixed point theorem; nonlinear fractional Langevin equations; boundary value problems; existence; fixed point theorem
UR - http://eudml.org/doc/262208
ER -
References
top- Baleanu, D., Machado, J. A. T., Luo, A. C.-J., Fractional Dynamics and Control, Springer, Berlin, 2012. (2012) Zbl1231.93003MR2905887
- Diethelm, K., The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics Vol. 2014, dmlbpublisherSpringer, Berlin, 2010. (2010) Zbl1215.34001MR2680847
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Vol. 204, Elsevier Science, 2006. (2006) Zbl1092.45003MR2218073
- Lakshmikantham, V., Leela, S., Vasundhara Devi, J., Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009. (2009) Zbl1188.37002
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, 1993. (1993) MR1219954
- Michalski, M. W., Derivatives of Noninteger Order and Their Applications, Dissertationes Mathematicae 328, Inst. Math., Polish Acad. Sci., 1993. (1993) Zbl0880.26007MR1247113
- Podlubny, I., Fractional Differential Equations, Academic Press, 1999. (1999) Zbl0924.34008MR1658022
- Tarasov, V. E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, dmlbpublisherSpringer, 2011. (2011) MR2796453
- Staněk, S., 10.1016/j.amc.2012.09.008, Appl. Math. Comput. 219 (2012), 2361–2370. (2012) Zbl1308.34104MR2988118DOI10.1016/j.amc.2012.09.008
- Staněk, S., 10.2478/s11533-012-0141-4, Cent. Eur. J. Math. 11 (2013), 574–593. (2013) Zbl1262.34008MR3016324DOI10.2478/s11533-012-0141-4
- O’Regan, D., Staněk, S., 10.1007/s11071-012-0443-x, Nonlinear Dyn. 71 (2013), 641–652. (2013) Zbl1268.34023MR3030127DOI10.1007/s11071-012-0443-x
- Agarwal, R. P., O’Regan, D., Staněk, S., Positive solutions for mixed problems of singular fractional differential equations, Mathematische Nachrichten 11 (2011), 1–15. (2011)
- Agarwal, R. P., O’Regan, D., Staněk, S., 10.1016/j.jmaa.2010.04.034, J. Math. Anal. Appl. 37 (2010), 57–68. (2010) DOI10.1016/j.jmaa.2010.04.034
- Agarwal, R. P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta. Appl. Math. 109 (2010), 973–1033. (2010) Zbl1198.26004MR2596185DOI10.1007/s10440-008-9356-6
- Ahmad, B., Nieto, J. J., Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory, Topol. Methods Nonlinear Anal. 35 (2010), 295–304. (2010) Zbl1245.34008MR2676818
- Bai, Z., On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., TMA 72 (2010), 916–924. (2010) Zbl1187.34026MR2579357
- Benchohra, M., Henderson, J., Ntouyas, S. K., Ouahab, A., 10.1016/j.jmaa.2007.06.021, J. Math. Anal. Appl. 338 (2008), 1340–1350. (2008) Zbl1209.34096MR2386501DOI10.1016/j.jmaa.2007.06.021
- Mophou, G. M., N’Guérékata, G. M., 10.1016/j.amc.2009.12.062, Appl. Math. Comput. 216 (2010), 61–69. (2010) Zbl1191.34098MR2596132DOI10.1016/j.amc.2009.12.062
- Wang, J., Fec̆kan, M., Zhou, Y., 10.4310/DPDE.2011.v8.n4.a3, Dynam. Part. Differ. Eq. 8 (2011), 345–361. (2011) Zbl1264.34014MR2901608DOI10.4310/DPDE.2011.v8.n4.a3
- Wang, J., Zhou, Y., Analysis of nonlinear fractional control systems in Banach spaces, Nonlinear Anal., TMA 74 (2011), 5929–5942. (2011) Zbl1223.93059MR2833364
- Zhang, S., 10.1016/S0022-247X(02)00583-8, J. Math. Anal. Appl. 278 (2003), 136–148. (2003) Zbl1026.34008MR1963470DOI10.1016/S0022-247X(02)00583-8
- Zhou, Y., Jiao, F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal., RWA 11 (2010), 4465–4475. (2010) Zbl1260.34017MR2683890
- Zhou, Y., Jiao, F., Li, J., Existence and uniqueness for -type fractional neutral differential equations, Nonlinear Anal., TMA 71 (2009), 2724–2733. (2009) Zbl1175.34082MR2532797
- Lutz, E., 10.1103/PhysRevE.64.051106, Phys. Rev. E 64, 051106 (2001), 1–4. (2001) DOI10.1103/PhysRevE.64.051106
- Fa, K. S., 10.1103/PhysRevE.73.061104, Phys. Rev. E 73, 061104 (2006), 1–4. (2006) DOI10.1103/PhysRevE.73.061104
- Fa, K. S., 10.1140/epje/i2007-10224-2, Eur. Phys. J. E 24 (2007), 139–143. (2007) DOI10.1140/epje/i2007-10224-2
- Kobolev, V., Romanov, E., 10.1143/PTPS.139.470, Prog. Theor. Phys. Suppl. 139 (2000), 470–476. (2000) DOI10.1143/PTPS.139.470
- Picozzi, S., West, B., 10.1103/PhysRevE.66.046118, Phys. Rev. E 66, 046118 (2002), 1–12. (2002) MR1935186DOI10.1103/PhysRevE.66.046118
- Bazzani, A., Bassi, G., Turchetti, G., 10.1016/S0378-4371(03)00073-6, Physica A 324 (2003), 530–550. (2003) Zbl1050.82029MR1982904DOI10.1016/S0378-4371(03)00073-6
- Lim, S. C., Li, M., Teo, L. P., 10.1016/j.physleta.2008.08.045, Phys. Lett. A 372 (2008), 6309–6320. (2008) Zbl1225.82049MR2462401DOI10.1016/j.physleta.2008.08.045
- Ahmad, B., Nieto, J. J., Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Difference Equ. 2010, ID 649486 (2010), 1–10. (2010) Zbl1207.34007MR2575288
- Ahmad, B., Eloe, P., A nonlocal boundary value problem for a nonlinear fractional differential equation with two indices, Commun. Appl. Nonlinear Anal. 17 (2010), 69–80. (2010) Zbl1275.34005MR2721923
- Ahmad, B., Nieto, J. J., Alsaedi, A., El-Shahed, M., A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal., RWA 13 (2012), 599–606. (2012) Zbl1238.34008MR2846866
- Chen, A., Chen, Y., Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions, Bound. Value Probl. 2011, ID 516481 (2011), 1–17. (2011) Zbl1228.34016MR2783108
- Ibrahim, R. W., Existence of nonlinear Lane–Emden equation of fractional order, Math. Notes, Miskolc 13 (2012), 39–52. (2012) Zbl1265.34216MR2954543
- Sandev, T., Tomovski, Ž., Dubbeldam, J. L. A., 10.1016/j.physa.2011.05.039, Physica A 390 (2011), 3627–3636. (2011) DOI10.1016/j.physa.2011.05.039
- Sandev, T., Metzler, R., Tomovski, Ž., 10.2478/s13540-012-0031-2, Fract. Calc. Appl. Anal. 15 (2012), 426–450. (2012) Zbl1274.82045MR2944109DOI10.2478/s13540-012-0031-2
- Smart, D. R., Fixed Point Theorems, Cambridge University Press, Cambridge, 1980. (1980) Zbl0427.47036MR0467717
- Wang, J., Dong, X., Zhou, Y., 10.1016/j.cnsns.2011.12.002, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 3129–3139. (2012) Zbl1298.45011MR2904208DOI10.1016/j.cnsns.2011.12.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.