Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations
Xuezhu Li; Milan Medveď; Jin Rong Wang
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 2, page 85-100
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topReferences
top- Baleanu, D., Machado, J. A. T., Luo, A. C.-J., Fractional Dynamics and Control, Springer, Berlin, 2012. (2012) Zbl1231.93003MR2905887
- Diethelm, K., The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics Vol. 2014, dmlbpublisherSpringer, Berlin, 2010. (2010) Zbl1215.34001MR2680847
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Vol. 204, Elsevier Science, 2006. (2006) Zbl1092.45003MR2218073
- Lakshmikantham, V., Leela, S., Vasundhara Devi, J., Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009. (2009) Zbl1188.37002
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, 1993. (1993) MR1219954
- Michalski, M. W., Derivatives of Noninteger Order and Their Applications, Dissertationes Mathematicae 328, Inst. Math., Polish Acad. Sci., 1993. (1993) Zbl0880.26007MR1247113
- Podlubny, I., Fractional Differential Equations, Academic Press, 1999. (1999) Zbl0924.34008MR1658022
- Tarasov, V. E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, dmlbpublisherSpringer, 2011. (2011) MR2796453
- Staněk, S., 10.1016/j.amc.2012.09.008, Appl. Math. Comput. 219 (2012), 2361–2370. (2012) Zbl1308.34104MR2988118DOI10.1016/j.amc.2012.09.008
- Staněk, S., 10.2478/s11533-012-0141-4, Cent. Eur. J. Math. 11 (2013), 574–593. (2013) Zbl1262.34008MR3016324DOI10.2478/s11533-012-0141-4
- O’Regan, D., Staněk, S., 10.1007/s11071-012-0443-x, Nonlinear Dyn. 71 (2013), 641–652. (2013) Zbl1268.34023MR3030127DOI10.1007/s11071-012-0443-x
- Agarwal, R. P., O’Regan, D., Staněk, S., Positive solutions for mixed problems of singular fractional differential equations, Mathematische Nachrichten 11 (2011), 1–15. (2011)
- Agarwal, R. P., O’Regan, D., Staněk, S., 10.1016/j.jmaa.2010.04.034, J. Math. Anal. Appl. 37 (2010), 57–68. (2010) DOI10.1016/j.jmaa.2010.04.034
- Agarwal, R. P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta. Appl. Math. 109 (2010), 973–1033. (2010) Zbl1198.26004MR2596185DOI10.1007/s10440-008-9356-6
- Ahmad, B., Nieto, J. J., Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory, Topol. Methods Nonlinear Anal. 35 (2010), 295–304. (2010) Zbl1245.34008MR2676818
- Bai, Z., On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., TMA 72 (2010), 916–924. (2010) Zbl1187.34026MR2579357
- Benchohra, M., Henderson, J., Ntouyas, S. K., Ouahab, A., 10.1016/j.jmaa.2007.06.021, J. Math. Anal. Appl. 338 (2008), 1340–1350. (2008) Zbl1209.34096MR2386501DOI10.1016/j.jmaa.2007.06.021
- Mophou, G. M., N’Guérékata, G. M., 10.1016/j.amc.2009.12.062, Appl. Math. Comput. 216 (2010), 61–69. (2010) Zbl1191.34098MR2596132DOI10.1016/j.amc.2009.12.062
- Wang, J., Fec̆kan, M., Zhou, Y., 10.4310/DPDE.2011.v8.n4.a3, Dynam. Part. Differ. Eq. 8 (2011), 345–361. (2011) Zbl1264.34014MR2901608DOI10.4310/DPDE.2011.v8.n4.a3
- Wang, J., Zhou, Y., Analysis of nonlinear fractional control systems in Banach spaces, Nonlinear Anal., TMA 74 (2011), 5929–5942. (2011) Zbl1223.93059MR2833364
- Zhang, S., 10.1016/S0022-247X(02)00583-8, J. Math. Anal. Appl. 278 (2003), 136–148. (2003) Zbl1026.34008MR1963470DOI10.1016/S0022-247X(02)00583-8
- Zhou, Y., Jiao, F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal., RWA 11 (2010), 4465–4475. (2010) Zbl1260.34017MR2683890
- Zhou, Y., Jiao, F., Li, J., Existence and uniqueness for -type fractional neutral differential equations, Nonlinear Anal., TMA 71 (2009), 2724–2733. (2009) Zbl1175.34082MR2532797
- Lutz, E., 10.1103/PhysRevE.64.051106, Phys. Rev. E 64, 051106 (2001), 1–4. (2001) DOI10.1103/PhysRevE.64.051106
- Fa, K. S., 10.1103/PhysRevE.73.061104, Phys. Rev. E 73, 061104 (2006), 1–4. (2006) DOI10.1103/PhysRevE.73.061104
- Fa, K. S., 10.1140/epje/i2007-10224-2, Eur. Phys. J. E 24 (2007), 139–143. (2007) DOI10.1140/epje/i2007-10224-2
- Kobolev, V., Romanov, E., 10.1143/PTPS.139.470, Prog. Theor. Phys. Suppl. 139 (2000), 470–476. (2000) DOI10.1143/PTPS.139.470
- Picozzi, S., West, B., 10.1103/PhysRevE.66.046118, Phys. Rev. E 66, 046118 (2002), 1–12. (2002) MR1935186DOI10.1103/PhysRevE.66.046118
- Bazzani, A., Bassi, G., Turchetti, G., 10.1016/S0378-4371(03)00073-6, Physica A 324 (2003), 530–550. (2003) Zbl1050.82029MR1982904DOI10.1016/S0378-4371(03)00073-6
- Lim, S. C., Li, M., Teo, L. P., 10.1016/j.physleta.2008.08.045, Phys. Lett. A 372 (2008), 6309–6320. (2008) Zbl1225.82049MR2462401DOI10.1016/j.physleta.2008.08.045
- Ahmad, B., Nieto, J. J., Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Difference Equ. 2010, ID 649486 (2010), 1–10. (2010) Zbl1207.34007MR2575288
- Ahmad, B., Eloe, P., A nonlocal boundary value problem for a nonlinear fractional differential equation with two indices, Commun. Appl. Nonlinear Anal. 17 (2010), 69–80. (2010) Zbl1275.34005MR2721923
- Ahmad, B., Nieto, J. J., Alsaedi, A., El-Shahed, M., A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal., RWA 13 (2012), 599–606. (2012) Zbl1238.34008MR2846866
- Chen, A., Chen, Y., Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions, Bound. Value Probl. 2011, ID 516481 (2011), 1–17. (2011) Zbl1228.34016MR2783108
- Ibrahim, R. W., Existence of nonlinear Lane–Emden equation of fractional order, Math. Notes, Miskolc 13 (2012), 39–52. (2012) Zbl1265.34216MR2954543
- Sandev, T., Tomovski, Ž., Dubbeldam, J. L. A., 10.1016/j.physa.2011.05.039, Physica A 390 (2011), 3627–3636. (2011) DOI10.1016/j.physa.2011.05.039
- Sandev, T., Metzler, R., Tomovski, Ž., 10.2478/s13540-012-0031-2, Fract. Calc. Appl. Anal. 15 (2012), 426–450. (2012) Zbl1274.82045MR2944109DOI10.2478/s13540-012-0031-2
- Smart, D. R., Fixed Point Theorems, Cambridge University Press, Cambridge, 1980. (1980) Zbl0427.47036MR0467717
- Wang, J., Dong, X., Zhou, Y., 10.1016/j.cnsns.2011.12.002, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 3129–3139. (2012) Zbl1298.45011MR2904208DOI10.1016/j.cnsns.2011.12.002