Two-point boundary value problems for the generalized Bagley-Torvik fractional differential equation
Open Mathematics (2013)
- Volume: 11, Issue: 3, page 574-593
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topSvatoslav Staněk. "Two-point boundary value problems for the generalized Bagley-Torvik fractional differential equation." Open Mathematics 11.3 (2013): 574-593. <http://eudml.org/doc/268947>.
@article{SvatoslavStaněk2013,
abstract = {We investigate the fractional differential equation u″ + A c D α u = f(t, u, c D μ u, u′) subject to the boundary conditions u′(0) = 0, u(T)+au′(T) = 0. Here α ∈ (1, 2), µ ∈ (0, 1), f is a Carathéodory function and c D is the Caputo fractional derivative. Existence and uniqueness results for the problem are given. The existence results are proved by the nonlinear Leray-Schauder alternative. We discuss the existence of positive and negative solutions to the problem and properties of their derivatives.},
author = {Svatoslav Staněk},
journal = {Open Mathematics},
keywords = {Fractional differential equation; Bagley-Torvik fractional equation; Caputo derivative; Boundary value problem; Existence; Uniqueness; Positive solution; Negative solution; Nonlinear Leray-Schauder alternative; fractional differential equation; boundary value problem; existence; uniqueness; positive solution; negative solution; nonlinear Leray-Schauder alternative},
language = {eng},
number = {3},
pages = {574-593},
title = {Two-point boundary value problems for the generalized Bagley-Torvik fractional differential equation},
url = {http://eudml.org/doc/268947},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Svatoslav Staněk
TI - Two-point boundary value problems for the generalized Bagley-Torvik fractional differential equation
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 574
EP - 593
AB - We investigate the fractional differential equation u″ + A c D α u = f(t, u, c D μ u, u′) subject to the boundary conditions u′(0) = 0, u(T)+au′(T) = 0. Here α ∈ (1, 2), µ ∈ (0, 1), f is a Carathéodory function and c D is the Caputo fractional derivative. Existence and uniqueness results for the problem are given. The existence results are proved by the nonlinear Leray-Schauder alternative. We discuss the existence of positive and negative solutions to the problem and properties of their derivatives.
LA - eng
KW - Fractional differential equation; Bagley-Torvik fractional equation; Caputo derivative; Boundary value problem; Existence; Uniqueness; Positive solution; Negative solution; Nonlinear Leray-Schauder alternative; fractional differential equation; boundary value problem; existence; uniqueness; positive solution; negative solution; nonlinear Leray-Schauder alternative
UR - http://eudml.org/doc/268947
ER -
References
top- [1] Al-Mdallal Q.M., Syam M.I., Anwar M.N., A collocation-shooting method for solving fractional boundary value problems, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(12), 3814–3822 http://dx.doi.org/10.1016/j.cnsns.2010.01.020[Crossref][WoS] Zbl1222.65078
- [2] Çenesiz Y., Keskin Y., Kurnaz A., The solution of the Bagley-Torvik equation with the generalized Taylor collocation method, J. Franklin Inst., 2010, 347(2), 452–466 http://dx.doi.org/10.1016/j.jfranklin.2009.10.007[Crossref] Zbl1188.65107
- [3] Coputo M., Linear models of dissipation whose Q is almost frequency independent. II, Fract. Calc. Appl. Anal., 2008, 11(1), 4–14
- [4] Daftardar-Gejji V., Jafari H., Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 2005, 301(2), 508–518 http://dx.doi.org/10.1016/j.jmaa.2004.07.039[Crossref] Zbl1061.34003
- [5] Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985 http://dx.doi.org/10.1007/978-3-662-00547-7[Crossref]
- [6] Diethelm K., The Analysis of Fractional Differential Equations, Lecture Notes in Math., 2004, Springer, Berlin, 2010
- [7] Diethelm K., Ford N.J., Numerical solution of the Bagley-Torvik equation, BIT, 2002, 42(3), 490–507 Zbl1035.65067
- [8] Edwards J.T., Ford N.J., Simpson A.C., The numerical solution of linear multi-term fractional differential equations: systems of equations, J. Comput. Appl. Math., 2002, 148(2), 401–418 http://dx.doi.org/10.1016/S0377-0427(02)00558-7[Crossref] Zbl1019.65048
- [9] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer, Berlin-New York, 1989
- [10] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 http://dx.doi.org/10.1016/S0304-0208(06)80001-0[Crossref]
- [11] Podlubny I., Fractional Differential Equations, Math. Sci. Engrg., 198, Academic Press, San Diego, 1999
- [12] Raja M.A.Z., Khan J.A., Qureshi I.M., Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence, Math. Probl. Eng., 2011, #675075 [WoS] Zbl05904909
- [13] Ray S.S., Bera R.K., Analytical solution of the Bagley Torvik equation by Adomian decomposition method, Appl. Math. Comput., 2005, 168(1), 398–410 http://dx.doi.org/10.1016/j.amc.2004.09.006[Crossref]
- [14] Torvik P.J., Bagley R.L., On the appearance of the fractional derivative in the behavior of real materials, Trans. ASME J. Appl. Mech., 1984, 51(2), 294–298 http://dx.doi.org/10.1115/1.3167615[Crossref] Zbl1203.74022
- [15] Wang Z.H., Wang X., General solution of the Bagley-Torvik equation with fractional-order derivative, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(5), 1279–1285 http://dx.doi.org/10.1016/j.cnsns.2009.05.069[Crossref]
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.