A geometric approach to the Jacobian Conjecture in ℂ²
Annales Polonici Mathematici (1991)
- Volume: 55, Issue: 1, page 95-101
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topLudwik M. Drużkowski. "A geometric approach to the Jacobian Conjecture in ℂ²." Annales Polonici Mathematici 55.1 (1991): 95-101. <http://eudml.org/doc/262260>.
@article{LudwikM1991,
abstract = {We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set $g^\{-1\}(0)$ (resp. $f^\{-1\}(0)$), then (f,g) is bijective.},
author = {Ludwik M. Drużkowski},
journal = {Annales Polonici Mathematici},
keywords = {Jacobian conjecture; Riemann-Hurwitz-relation},
language = {eng},
number = {1},
pages = {95-101},
title = {A geometric approach to the Jacobian Conjecture in ℂ²},
url = {http://eudml.org/doc/262260},
volume = {55},
year = {1991},
}
TY - JOUR
AU - Ludwik M. Drużkowski
TI - A geometric approach to the Jacobian Conjecture in ℂ²
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 95
EP - 101
AB - We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set $g^{-1}(0)$ (resp. $f^{-1}(0)$), then (f,g) is bijective.
LA - eng
KW - Jacobian conjecture; Riemann-Hurwitz-relation
UR - http://eudml.org/doc/262260
ER -
References
top- [1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay 1977. Zbl0818.14001
- [2] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 149-166. Zbl0332.14004
- [3] H. Appelgate and H. Onishi, The Jacobian Conjecture in two variables, J. Pure Appl. Algebra 37 (1985), 215-227. Zbl0571.13005
- [4] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (2) (1982), 287-330. Zbl0539.13012
- [5] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203. Zbl0107.14602
- [6] S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math. 92 (1988), 217-241. Zbl0658.32005
- [7] J. Chądzyński and T. Krasiński, Properness and the Jacobian Conjecture in ℂ², to appear. Zbl0887.32008
- [8] R. Ephraim, Special polars and curves with one place at infinity, in: Proc. Sympos. Pure Math. 40, Vol. I, Amer. Math. Soc., 1983, 353-360. Zbl0537.14020
- [9] H. Farkas and I. Kra, Riemann Surfaces, Springer, 1980.
- [10] M. Furushima, Finite groups of polynomial automorphisms in the complex affine plane, Mem. Fac. Sci. Kyushu Univ. Ser. A 36 (1) (1982), 85-105. Zbl0547.32015
- [11] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.
- [12] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, to appear. Zbl0773.32007
- [13] T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Math. Soc. 44 (1974), 22-24. Zbl0309.14011
- [14] T. T. Moh, On the Jacobian Conjecture and the configuration of roots, J. Reine Angew. Math. 340 (1983), 140-212. Zbl0525.13011
- [15] D. Mumford, Introduction to Algebraic Geometry, Springer, 1976. Zbl0356.14002
- [16] Y. Nakai and K. Baba, A generalization of Magnus theorem, Osaka J. Math. 14 (1977), 403-409. Zbl0373.12010
- [17] A Nowicki, On the Jacobian Conjecture in two variables, J. Pure Appl. Algebra 50 (1988), 195-207. Zbl0642.13015
- [18] K. Rusek and T. Winiarski, Criteria for regularity of holomorphic mappings, Bull. Acad. Polon. Sci. 28 (9-10) (1980), 471-475. Zbl0507.14003
- [19] K. Rusek and T. Winiarski, Polynomial automorphisms of , Univ. Iagel. Acta Math. 24 (1984), 143-149.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.