A geometric approach to the Jacobian Conjecture in ℂ²

Ludwik M. Drużkowski

Annales Polonici Mathematici (1991)

  • Volume: 55, Issue: 1, page 95-101
  • ISSN: 0066-2216

Abstract

top
We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set g - 1 ( 0 ) (resp. f - 1 ( 0 ) ), then (f,g) is bijective.

How to cite

top

Ludwik M. Drużkowski. "A geometric approach to the Jacobian Conjecture in ℂ²." Annales Polonici Mathematici 55.1 (1991): 95-101. <http://eudml.org/doc/262260>.

@article{LudwikM1991,
abstract = {We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set $g^\{-1\}(0)$ (resp. $f^\{-1\}(0)$), then (f,g) is bijective.},
author = {Ludwik M. Drużkowski},
journal = {Annales Polonici Mathematici},
keywords = {Jacobian conjecture; Riemann-Hurwitz-relation},
language = {eng},
number = {1},
pages = {95-101},
title = {A geometric approach to the Jacobian Conjecture in ℂ²},
url = {http://eudml.org/doc/262260},
volume = {55},
year = {1991},
}

TY - JOUR
AU - Ludwik M. Drużkowski
TI - A geometric approach to the Jacobian Conjecture in ℂ²
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 95
EP - 101
AB - We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set $g^{-1}(0)$ (resp. $f^{-1}(0)$), then (f,g) is bijective.
LA - eng
KW - Jacobian conjecture; Riemann-Hurwitz-relation
UR - http://eudml.org/doc/262260
ER -

References

top
  1. [1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay 1977. Zbl0818.14001
  2. [2] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 149-166. Zbl0332.14004
  3. [3] H. Appelgate and H. Onishi, The Jacobian Conjecture in two variables, J. Pure Appl. Algebra 37 (1985), 215-227. Zbl0571.13005
  4. [4] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (2) (1982), 287-330. Zbl0539.13012
  5. [5] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203. Zbl0107.14602
  6. [6] S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math. 92 (1988), 217-241. Zbl0658.32005
  7. [7] J. Chądzyński and T. Krasiński, Properness and the Jacobian Conjecture in ℂ², to appear. Zbl0887.32008
  8. [8] R. Ephraim, Special polars and curves with one place at infinity, in: Proc. Sympos. Pure Math. 40, Vol. I, Amer. Math. Soc., 1983, 353-360. Zbl0537.14020
  9. [9] H. Farkas and I. Kra, Riemann Surfaces, Springer, 1980. 
  10. [10] M. Furushima, Finite groups of polynomial automorphisms in the complex affine plane, Mem. Fac. Sci. Kyushu Univ. Ser. A 36 (1) (1982), 85-105. Zbl0547.32015
  11. [11] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306. 
  12. [12] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, to appear. Zbl0773.32007
  13. [13] T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Math. Soc. 44 (1974), 22-24. Zbl0309.14011
  14. [14] T. T. Moh, On the Jacobian Conjecture and the configuration of roots, J. Reine Angew. Math. 340 (1983), 140-212. Zbl0525.13011
  15. [15] D. Mumford, Introduction to Algebraic Geometry, Springer, 1976. Zbl0356.14002
  16. [16] Y. Nakai and K. Baba, A generalization of Magnus theorem, Osaka J. Math. 14 (1977), 403-409. Zbl0373.12010
  17. [17] A Nowicki, On the Jacobian Conjecture in two variables, J. Pure Appl. Algebra 50 (1988), 195-207. Zbl0642.13015
  18. [18] K. Rusek and T. Winiarski, Criteria for regularity of holomorphic mappings, Bull. Acad. Polon. Sci. 28 (9-10) (1980), 471-475. Zbl0507.14003
  19. [19] K. Rusek and T. Winiarski, Polynomial automorphisms of n , Univ. Iagel. Acta Math. 24 (1984), 143-149. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.