The Jacobian Conjecture: survey of some results

Ludwik Drużkowski

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 163-171
  • ISSN: 0137-6934

Abstract

top
The paper contains the formulation of the problem and an almost up-to-date survey of some results in the area.

How to cite

top

Drużkowski, Ludwik. "The Jacobian Conjecture: survey of some results." Banach Center Publications 31.1 (1995): 163-171. <http://eudml.org/doc/262644>.

@article{Drużkowski1995,
abstract = {The paper contains the formulation of the problem and an almost up-to-date survey of some results in the area.},
author = {Drużkowski, Ludwik},
journal = {Banach Center Publications},
keywords = {jacobian conjecture},
language = {eng},
number = {1},
pages = {163-171},
title = {The Jacobian Conjecture: survey of some results},
url = {http://eudml.org/doc/262644},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Drużkowski, Ludwik
TI - The Jacobian Conjecture: survey of some results
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 163
EP - 171
AB - The paper contains the formulation of the problem and an almost up-to-date survey of some results in the area.
LA - eng
KW - jacobian conjecture
UR - http://eudml.org/doc/262644
ER -

References

top
  1. [A] S. S. Abhyankar, Local Analytic Geometry, Academic Press, New York, 1964. Zbl0205.50401
  2. [BCW] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330. Zbl0539.13012
  3. [BR] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203. Zbl0107.14602
  4. [Ch] Nguyen Van Chau, A sufficient condition for injectivity of polynomial maps on 2 , Acta Math. Vietnamica, to appear. 
  5. [CK] J. Chądzyński and T. Krasiński, Properness and the Jacobian Conjecture in C 2 , Bull. Soc. Sci. Lettres Łódź XIV, 132 (1992), 13-19. Zbl0887.32008
  6. [Co] P. M. Cohn, On the structure of the G L 2 of a ring, Publ. I.H.E.S. 30 (1966), 365-413. Zbl0144.26301
  7. [D1] L. M. Drużkowski, An effective approach to Keller's Jacobian Conjecture, Math. Ann. 264 (1983), 303-313. Zbl0504.13006
  8. [D2] L. M. Drużkowski, A geometric approach to the Jacobian Conjecture in C 2 , Ann. Polon. Math. 55 (1991), 95-101. Zbl0772.14006
  9. [D3] L. M. Drużkowski, The Jacobian Conjecture in case of rank or corank less than three, J. Pure Appl. Algebra 85 (1993), 233-244. Zbl0781.13015
  10. [D4] L. M. Drużkowski, The Jacobian Conjecture, preprint 492, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1991. 
  11. [DR] L. M. Drużkowski and K. Rusek, The formal inverse and the Jacobian Conjecture, Ann. Polon. Math. 46 (1985), 85-90. Zbl0644.12010
  12. [DT] L. M. Drużkowski and H. Tutaj, Differential conditions to verify the Jacobian Conjecture, ibid. 57 (1992), 253-263. Zbl0778.34038
  13. [E] W. Engel, Ein Satz über ganze Cremona Transformationen der Ebene, Math. Ann. 130 (1955), 11-19. Zbl0065.02603
  14. [Es1] A. van den Essen, A criterion to decide if a polynomial map is invertible and to compute the inverse, Comm. Algebra 18 (1990), 3183-3186. Zbl0718.13008
  15. [Es2] A. van den Essen, Polynomial maps and the Jacobian Conjecture, Report 9034, Catholic University, Nijmegen, The Netherlands, 1990. 
  16. [Es3] A. van den Essen, The exotic world of invertible polynomial maps, Nieuw Arch. Wisk. (4) 11 (1993), 21-31. Zbl0802.13003
  17. [G] W. Gröbner, Sopra un teorema di B. Segre, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 31 (1961), 118-122. 
  18. [K] O.-H. Keller, Ganze Cremona-Transformationen, Monatshefte Math. Phys. 47 (1939), 299-306. 
  19. [KS] T. Krasiński and S. Spodzieja, On linear differential operators related to the n-dimensional Jacobian Conjecture, in: Lecture Notes Math. 1524, Springer, 1992, 308-315. Zbl0774.32008
  20. [M] G. H. Meisters, Jacobian problems in differential equations and algebraic geometry, Rocky Mountain J. Math. 12 (1982), 679-705. Zbl0523.34050
  21. [MO1] G. H. Meisters and C. Olech, A poly-flow formulation of the Jacobian Conjecture, Bull. Polish Acad. Sci. 35 (1987), 725-731. Zbl0646.34018
  22. [MO2] G. H. Meisters and C. Olech, Solution of the Global Asymptotic Stability Jacobian Conjecture for the polynomial case, in: Analyse Mathématique et Applications, Gauthier-Villars, Paris, 1988, 373-381. 
  23. [MO3] G. H. Meisters and C. Olech, A Jacobian Condition for injectivity of differentiable plane maps, Ann. Polon. Math. 51 (1990), 249-254. Zbl0734.26008
  24. [Mo] T. T. Moh, On the Jacobian Conjecture and the configuration of roots, J. Reine Angew. Math. 340 (1983), 140-212. Zbl0525.13011
  25. [O] S. Oda, The Jacobian Problem and the simply-connectedness of A n over a field k of characteristic zero, preprint, Osaka University, 1980. 
  26. [Or] S. Yu. Orevkov, On three-sheeted polynomial mappings of C 2 , Izv. Akad. Nauk SSSR 50 (6) (1986), 1231-1240 (in Russian). 
  27. [P] A. Płoski, On the growth of proper polynomial mappings, Ann. Polon. Math. 45 (1985), 297-309. Zbl0584.32006
  28. [R1] K. Rusek, A geometric approach to Keller's Jacobian Conjecture, Math. Ann. 264 (1983), 315-320. Zbl0527.14014
  29. [R2] K. Rusek, Polynomial automorphisms, preprint 456, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1989. 
  30. [RW] K. Rusek and T. Winiarski, Polynomial automorphisms of C n , Univ. Iagell. Acta Math. 24 (1984), 143-149. 
  31. [S1] B. Segre, Corrispondenze di Möbius e Transformazioni cremoniane intere, Atti Accad. Sci. Torino: Cl. Sci. Fis. Mat. Nat. 91 (1956-57), 3-19. 
  32. [S2] B. Segre, Forma differenziali e loro integrali, vol. II, Docet, Roma, 1956. 
  33. [S3] B. Segre, Variazione continua ed omotopia in geometria algebraica, Ann. Mat. Pura Appl. 100 (1960), 149-186. Zbl0099.16401
  34. [St] B. Segre, On linear differential operators related to the Jacobian Conjecture, J. Pure Appl. Algebra 52 (1989), 175-186. 
  35. [V] A. G. Vitushkin, Some examples connected with polynomial mappings in n , Izv. Akad. Nauk SSSR Ser. Mat. 35 (2) (1971), 269-279. 
  36. [W] T. Winiarski, Inverse of polynomial automorphisms of n , Bull. Acad. Polon. Sci. Math. 27 (1979), 673-674. Zbl0451.32014
  37. [Wr1] D. Wright, The amalgamated free product structure of G L 2 ( k [ X 1 , . . . , X n ] ) and the weak Jacobian Theorem for two variables, J. Pure Appl. Algebra 12 (1978), 235-251. Zbl0387.20039
  38. [Wr2] D. Wright, The Jacobian Conjecture: linear triangularization for cubics in dimension three, Linear and Multilinear Algebra 34 (1993), 85-97. Zbl0811.13014
  39. [Y] A. V. Yagzhev, On Keller's problem, Sibirsk. Mat. Zh. 21 (1980), 141-150 (in Russian). Zbl0466.13009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.