Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)
- Volume: 10, Issue: 4, page 607-647
- ISSN: 0391-173X
Access Full Article
topHow to cite
topValli, Alberto. "Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.4 (1983): 607-647. <http://eudml.org/doc/83920>.
@article{Valli1983,
author = {Valli, Alberto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {boundary-initial value problem; compressible flow; zero boundary conditions; local existence; uniqueness; global a-priori estimates; energy stability; comparisons; stationary Stokes problem},
language = {eng},
number = {4},
pages = {607-647},
publisher = {Scuola normale superiore},
title = {Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method},
url = {http://eudml.org/doc/83920},
volume = {10},
year = {1983},
}
TY - JOUR
AU - Valli, Alberto
TI - Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 4
SP - 607
EP - 647
LA - eng
KW - boundary-initial value problem; compressible flow; zero boundary conditions; local existence; uniqueness; global a-priori estimates; energy stability; comparisons; stationary Stokes problem
UR - http://eudml.org/doc/83920
ER -
References
top- [1] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II, Comm. Pure Appl. Math., 17 (1964), pp. 35-92. Zbl0123.28706MR162050
- [2] H. Beirão Da Veiga, Diffusion on viscous fluids. Existence and asymptotic properties of solutions, Ann. Scuola Norm. Sup. Pisa, (IV), 10 (1983), pp. 341-355. Zbl0531.76095MR728440
- [3] J.P. Bourguignon - H. Brezis, Remarks on the Euler equation, J. Funct. Anal., 15 (1974), pp. 341-363. Zbl0279.58005MR344713
- [4] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), pp. 308-340. Zbl0116.18002MR138894
- [5] M. Giaquinta - G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math., 330 (1982), pp. 173-214. Zbl0492.35018MR641818
- [6] D. Graffi, Il teorema di unicità nella dinamica dei fluidi compressibili, J. Rational Mech. Anal., 2 (1953), pp. 99-106. Zbl0050.19604MR52270
- [7] J.G. Heywood - R. Rannacher, Finite element approximation of the non-stationary Navier-Stokes problem. - I : Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (1982), pp. 275-311. Zbl0487.76035MR650052
- [8] J.G. Heywood - R. Rannacher, Finite element approximation of the non-stationary Navier-Stokes problem. - II: Stable solutions and error estimates uniform in time, Preprint University of Erlangen-Nürnberg, 1981.
- [9] N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodai Math. Sem. Rep., 23 (1971), pp. 60-120. Zbl0219.76080MR283426
- [10] A. Matsumura - T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), pp. 67-104. Zbl0429.76040MR564670
- [11] A. Matsumura - T. Nishida, The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluid, Preprint University of Wisconsin, MRC Technical Summary Report no. 2237 (1981). MR713680
- [12] A. Matsumura - T. Nishida, Initial boundary value problems for the equations of motion of general fluids, in « Computing methods in applied sciences and engineering », V, ed. R. Glowinski and J. L. Lions, North-Holland Publishing Company, Amsterdam - New York - Oxford, 1982. Zbl0505.76083MR784652
- [13] J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), pp. 487-497. Zbl0113.19405MR149094
- [14] M. Padula, Existence and uniqueness for viscous steady compressible motions, to appear. Zbl0644.76086MR860302
- [15] R. Rannacher, Stable finite element solutions to nonlinear parabolic problems of Navier-Stokes type, in « Computing methods in applied sciences and engineering », V, ed. R. Glowinski and J. L. Lions, North-Holland Publishing Company, Amsterdam - New York - Oxford, 1982. Zbl0505.76049MR784647
- [16] J. Serrin, Mathematical principles of classical fluid mechanics, in « Handbuch der Physik », Bd. VIII/1, Springer-Verlag, Berlin - Göttingen - Heidelberg, 1959. MR108116
- [17] J. Serrin, On the stability of viscous fluid motions, Arch. Rational Mech. Anal.3 (1959), pp. 1-13. Zbl0086.20001MR105250
- [18] J. Serrin, A note on the existence of periodic solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 3 (1959), pp. 120-122. Zbl0089.19102MR105251
- [19] J. Serrin, On the uniqueness of compressible fluid motions, Arch. Rational Mech. Anal., 3 (1959), pp. 271-288. Zbl0089.19103MR106646
- [20] V.A. Solonnikov, Solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid, J. Soviet Math., 14 (1980), pp. 1120-1133 (previously in Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 56 (1976), pp. 128-142 [russian]). Zbl0451.35092MR481666
- [21] M. Spivak, A comprehensive introduction to differential geometry, vol. 4, Publish or Perish, Inc., Boston, 1975. Zbl0306.53002
- [22] A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion, Publ. Res. Inst. Math. Sci. Kyoto Univ., 13 (1977), pp. 193-253. Zbl0366.35070
- [23] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North. Holland Publishing Company, Amsterdam - New York - Oxford, 1977. Zbl0383.35057MR609732
- [24] A. Valli, Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds, Boll. Un. Mat. It., Anal. Funz. Appl., 18-C (1981), pp. 317-325. Zbl0484.76075MR631585
- [25] A. Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl., 130 (1982), pp. 197-213; 132 (1982), pp. 399-400. Zbl0599.76081MR663971
- [26] A.I. Vol'pert - S.I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR-Sb., 16 (1972), pp. 517-544 (previously in Mat. Sb., 87 (1972), pp. 504-528 [russian]). Zbl0251.35064MR390528
Citations in EuDML Documents
top- Takayuki Kobayashi, Wojciech Zajączkowski, On global motion of a compressible barotropic viscous fluid with boundary slip condition
- Alberto Valli, On the existence of stationary solutions to compressible Navier-Stokes equations
- Jiří Neustupa, Global weak solvability of a regularized system of the Navier-Stokes equations for compressible fluid
- H. Beirão da Veiga, The stability of one dimensional stationary flows of compressible viscous fluids
- Milan Štědrý, Otto Vejvoda, Equations of magnetohydrodynamics of compressible fluid: Periodic solutions
- Vladimír Lovicar, Ivan Straškraba, Remark on cavitation solutions of stationary compressible Navier-Stokes equations in one dimension
- Ewa Zadrzyńska, Wojciech M. Zajączkowski, On a differential inequality for a viscous compressible heat conducting capillary fluid bounded by a free surface
- Enrique Fernández-Cara, Francisco Guillén, Rubens R. Ortega, Some theoretical results concerning non newtonian fluids of the Oldroyd kind
- Ewa Zadrzyńska, Wojciech M. Zajączkowski, On a differential inequality for equations of a viscous compressible heat conducting fluid bounded by a free surface
- Patrick Dutto, Jean-Luc Impagliazzo, Antonin Novotny, Schauder estimates for steady compressible Navier-Stokes equations in bounded domains
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.