Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method

Alberto Valli

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)

  • Volume: 10, Issue: 4, page 607-647
  • ISSN: 0391-173X

How to cite

top

Valli, Alberto. "Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.4 (1983): 607-647. <http://eudml.org/doc/83920>.

@article{Valli1983,
author = {Valli, Alberto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {boundary-initial value problem; compressible flow; zero boundary conditions; local existence; uniqueness; global a-priori estimates; energy stability; comparisons; stationary Stokes problem},
language = {eng},
number = {4},
pages = {607-647},
publisher = {Scuola normale superiore},
title = {Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method},
url = {http://eudml.org/doc/83920},
volume = {10},
year = {1983},
}

TY - JOUR
AU - Valli, Alberto
TI - Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 4
SP - 607
EP - 647
LA - eng
KW - boundary-initial value problem; compressible flow; zero boundary conditions; local existence; uniqueness; global a-priori estimates; energy stability; comparisons; stationary Stokes problem
UR - http://eudml.org/doc/83920
ER -

References

top
  1. [1] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II, Comm. Pure Appl. Math., 17 (1964), pp. 35-92. Zbl0123.28706MR162050
  2. [2] H. Beirão Da Veiga, Diffusion on viscous fluids. Existence and asymptotic properties of solutions, Ann. Scuola Norm. Sup. Pisa, (IV), 10 (1983), pp. 341-355. Zbl0531.76095MR728440
  3. [3] J.P. Bourguignon - H. Brezis, Remarks on the Euler equation, J. Funct. Anal., 15 (1974), pp. 341-363. Zbl0279.58005MR344713
  4. [4] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), pp. 308-340. Zbl0116.18002MR138894
  5. [5] M. Giaquinta - G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math., 330 (1982), pp. 173-214. Zbl0492.35018MR641818
  6. [6] D. Graffi, Il teorema di unicità nella dinamica dei fluidi compressibili, J. Rational Mech. Anal., 2 (1953), pp. 99-106. Zbl0050.19604MR52270
  7. [7] J.G. Heywood - R. Rannacher, Finite element approximation of the non-stationary Navier-Stokes problem. - I : Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (1982), pp. 275-311. Zbl0487.76035MR650052
  8. [8] J.G. Heywood - R. Rannacher, Finite element approximation of the non-stationary Navier-Stokes problem. - II: Stable solutions and error estimates uniform in time, Preprint University of Erlangen-Nürnberg, 1981. 
  9. [9] N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodai Math. Sem. Rep., 23 (1971), pp. 60-120. Zbl0219.76080MR283426
  10. [10] A. Matsumura - T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), pp. 67-104. Zbl0429.76040MR564670
  11. [11] A. Matsumura - T. Nishida, The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluid, Preprint University of Wisconsin, MRC Technical Summary Report no. 2237 (1981). MR713680
  12. [12] A. Matsumura - T. Nishida, Initial boundary value problems for the equations of motion of general fluids, in « Computing methods in applied sciences and engineering », V, ed. R. Glowinski and J. L. Lions, North-Holland Publishing Company, Amsterdam - New York - Oxford, 1982. Zbl0505.76083MR784652
  13. [13] J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), pp. 487-497. Zbl0113.19405MR149094
  14. [14] M. Padula, Existence and uniqueness for viscous steady compressible motions, to appear. Zbl0644.76086MR860302
  15. [15] R. Rannacher, Stable finite element solutions to nonlinear parabolic problems of Navier-Stokes type, in « Computing methods in applied sciences and engineering », V, ed. R. Glowinski and J. L. Lions, North-Holland Publishing Company, Amsterdam - New York - Oxford, 1982. Zbl0505.76049MR784647
  16. [16] J. Serrin, Mathematical principles of classical fluid mechanics, in « Handbuch der Physik », Bd. VIII/1, Springer-Verlag, Berlin - Göttingen - Heidelberg, 1959. MR108116
  17. [17] J. Serrin, On the stability of viscous fluid motions, Arch. Rational Mech. Anal.3 (1959), pp. 1-13. Zbl0086.20001MR105250
  18. [18] J. Serrin, A note on the existence of periodic solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 3 (1959), pp. 120-122. Zbl0089.19102MR105251
  19. [19] J. Serrin, On the uniqueness of compressible fluid motions, Arch. Rational Mech. Anal., 3 (1959), pp. 271-288. Zbl0089.19103MR106646
  20. [20] V.A. Solonnikov, Solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid, J. Soviet Math., 14 (1980), pp. 1120-1133 (previously in Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 56 (1976), pp. 128-142 [russian]). Zbl0451.35092MR481666
  21. [21] M. Spivak, A comprehensive introduction to differential geometry, vol. 4, Publish or Perish, Inc., Boston, 1975. Zbl0306.53002
  22. [22] A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion, Publ. Res. Inst. Math. Sci. Kyoto Univ., 13 (1977), pp. 193-253. Zbl0366.35070
  23. [23] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North. Holland Publishing Company, Amsterdam - New York - Oxford, 1977. Zbl0383.35057MR609732
  24. [24] A. Valli, Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds, Boll. Un. Mat. It., Anal. Funz. Appl., 18-C (1981), pp. 317-325. Zbl0484.76075MR631585
  25. [25] A. Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl., 130 (1982), pp. 197-213; 132 (1982), pp. 399-400. Zbl0599.76081MR663971
  26. [26] A.I. Vol'pert - S.I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR-Sb., 16 (1972), pp. 517-544 (previously in Mat. Sb., 87 (1972), pp. 504-528 [russian]). Zbl0251.35064MR390528

Citations in EuDML Documents

top
  1. Takayuki Kobayashi, Wojciech Zajączkowski, On global motion of a compressible barotropic viscous fluid with boundary slip condition
  2. Alberto Valli, On the existence of stationary solutions to compressible Navier-Stokes equations
  3. Jiří Neustupa, Global weak solvability of a regularized system of the Navier-Stokes equations for compressible fluid
  4. H. Beirão da Veiga, The stability of one dimensional stationary flows of compressible viscous fluids
  5. Milan Štědrý, Otto Vejvoda, Equations of magnetohydrodynamics of compressible fluid: Periodic solutions
  6. Vladimír Lovicar, Ivan Straškraba, Remark on cavitation solutions of stationary compressible Navier-Stokes equations in one dimension
  7. Ewa Zadrzyńska, Wojciech M. Zajączkowski, On a differential inequality for a viscous compressible heat conducting capillary fluid bounded by a free surface
  8. Enrique Fernández-Cara, Francisco Guillén, Rubens R. Ortega, Some theoretical results concerning non newtonian fluids of the Oldroyd kind
  9. Ewa Zadrzyńska, Wojciech M. Zajączkowski, On a differential inequality for equations of a viscous compressible heat conducting fluid bounded by a free surface
  10. Patrick Dutto, Jean-Luc Impagliazzo, Antonin Novotny, Schauder estimates for steady compressible Navier-Stokes equations in bounded domains

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.