State estimation for miso non-linear systems in controller canonical form

Benoît Schwaller; Denis Ensminger; Birgitta Dresp-Langley; José Ragot

International Journal of Applied Mathematics and Computer Science (2016)

  • Volume: 26, Issue: 3, page 569-583
  • ISSN: 1641-876X

Abstract

top
We propose a new observer where the model, decomposed in generalized canonical form of regulation described by Fliess, is dissociated from the part assuring error correction. The obtained stable exact estimates give direct access to state variables in the form of successive derivatives. The dynamic response of the observer converges exponentially, as long as the nonlinearities are locally of Lipschitz type. In this case, we demonstrate that a quadratic Lyapunov function provides a number of inequalities which guarantee at least local stability. A synthesis of gains is proposed, independent of the observation time scale. Simulations of a Düffing system and a Lorenz strange attractor illustrate theoretical developments.

How to cite

top

Benoît Schwaller, et al. "State estimation for miso non-linear systems in controller canonical form." International Journal of Applied Mathematics and Computer Science 26.3 (2016): 569-583. <http://eudml.org/doc/286726>.

@article{BenoîtSchwaller2016,
abstract = {We propose a new observer where the model, decomposed in generalized canonical form of regulation described by Fliess, is dissociated from the part assuring error correction. The obtained stable exact estimates give direct access to state variables in the form of successive derivatives. The dynamic response of the observer converges exponentially, as long as the nonlinearities are locally of Lipschitz type. In this case, we demonstrate that a quadratic Lyapunov function provides a number of inequalities which guarantee at least local stability. A synthesis of gains is proposed, independent of the observation time scale. Simulations of a Düffing system and a Lorenz strange attractor illustrate theoretical developments.},
author = {Benoît Schwaller, Denis Ensminger, Birgitta Dresp-Langley, José Ragot},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {non-linear systems; state observers; continuous time},
language = {eng},
number = {3},
pages = {569-583},
title = {State estimation for miso non-linear systems in controller canonical form},
url = {http://eudml.org/doc/286726},
volume = {26},
year = {2016},
}

TY - JOUR
AU - Benoît Schwaller
AU - Denis Ensminger
AU - Birgitta Dresp-Langley
AU - José Ragot
TI - State estimation for miso non-linear systems in controller canonical form
JO - International Journal of Applied Mathematics and Computer Science
PY - 2016
VL - 26
IS - 3
SP - 569
EP - 583
AB - We propose a new observer where the model, decomposed in generalized canonical form of regulation described by Fliess, is dissociated from the part assuring error correction. The obtained stable exact estimates give direct access to state variables in the form of successive derivatives. The dynamic response of the observer converges exponentially, as long as the nonlinearities are locally of Lipschitz type. In this case, we demonstrate that a quadratic Lyapunov function provides a number of inequalities which guarantee at least local stability. A synthesis of gains is proposed, independent of the observation time scale. Simulations of a Düffing system and a Lorenz strange attractor illustrate theoretical developments.
LA - eng
KW - non-linear systems; state observers; continuous time
UR - http://eudml.org/doc/286726
ER -

References

top
  1. Alma, M. and Darouach, M. (2014). Adaptive observers design for a class of linear descriptor systems, Automatica 50(2): 578-583. 
  2. Bestle, D. and Zeitz, M. (1983). Canonical form observer design for non-linear time-variable systems, International Journal of Control 38(2): 419-431. Zbl0521.93012
  3. Bezzaoucha, S., Marx, B., Maquin, D. and Ragot, J. (2013). State and parameter estimation for time-varying systems: A Takagi-Sugeno approach, American Control Conference (ACC), Washington, DC, USA, pp. 1050-1055. 
  4. Bodizs, L., Srinivasan, B. and Bonvin, D. (2011). On the design of integral observers for unbiased output estimation in the presence of uncertainty, Journal of Process Control 21(3): 379-390. 
  5. Boker, A. and Khalil, H. (2013). Nonlinear observers comprising high-gain observers and extended Kalman filters, Automatica 49(12): 3583-3590. Zbl1315.93020
  6. Bouraoui, I., Farza, M., Ménard, T., Abdennour, R.B., M'Saad, M. and Mosrati, H. (2015). Observer design for a class of uncertain nonlinear systems with sampled outputs: Application to the estimation of kinetic rates in bioreactors, Automatica 55: 78-87. 
  7. Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423-430, DOI: 10.2478/v10006-011-0031-0. Zbl1234.93036
  8. Ciccarella, G., Mora, M.D. and Germani, A. (1993). A Luenberger-like observer for nonlinear systems, International Journal of Control 57(3): 537-556. Zbl0772.93018
  9. Efimov, D. and Fridman, L. (2011). Global sliding-mode observer with adjusted gains for locally Lipschitz systems, Automatica 47(3): 565-570. Zbl1216.93019
  10. Farza, M., Bouraoui, I., Ménard, T., Abdennour, R.B. and M'Saad, M. (2014). Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs, Automatica 50(11): 2951-2960. Zbl1300.93046
  11. Farza, M., M'Saad, M., Triki, M. and Maatoug, T. (2011). High gain observer for a class of non-triangular systems, Systems and Control Letters 60(1): 27-35. Zbl1207.93014
  12. Fliess, M. (1990). Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Transactions on Automatic Control 35(9): 994-1001. Zbl0724.93010
  13. Gauthier, J. and Bornard, G. (1981). Observability for any uÔtÕ of a class of nonlinear systems, IEEE Transactions on Automatic Control AC-26(4): 922-926. Zbl0553.93014
  14. Gauthier, J., Hammouri, H. and Othman, S. (1992). A simple observer for nonlinear systems. Applications to bioreactors, IEEE Transactions on Automatic Control 37(6): 875-880. Zbl0775.93020
  15. Ghosh, D., Saha, P. and Chowdhury, A. (2010). Linear observer based projective synchronization in delay Roessler system, Communications in Nonlinear Science and Numerical Simulation 15(6): 1640-1647. Zbl1221.34138
  16. Gille, J., Decaulne, P. and Pélegrin, M. (1988). Systèmes asservis non linéaires, 5 ième edn, Dunod, Paris. Zbl0189.45701
  17. Gißler, J. and Schmid, M. (1990). Vom Prozeß zur Regelung. Analyse, Entwurf, Realisierung in der Praxis, Siemens, Berlin/München. 
  18. Glumineau, A. and Lôpez-Morales, V. (1999). Transformation to State Affine System and Observer Design, Lecture Notes in Control and Information Science, Vol. 244, Springer, London. Zbl0978.93016
  19. Guerra, T., Estrada-Manzo, V. and Lendek, Z. (2015). Observer design for Takagi-Sugeno descriptor models: An LMI approach, Automatica 52: 154-159. Zbl1309.93091
  20. Hermann, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control AC-22(5): 728-740. Zbl0396.93015
  21. Krener, A. and Isidori, A. (1983). Linearization by output injection and nonlinear observers, Systems & Control Letters 3(1): 47-52. Zbl0524.93030
  22. Lorenz, E. (1963). Deterministic nonperiodic flow, Journal of the Atmospheric Sciences 20(2): 130-141. 
  23. Luenberger, D. (1966). Observers for multivariable systems, IEEE Transactions on Automatic Control AC-11(2): 190-197. 
  24. Martínez-Guerra, R., Mata-Machuca, J., Aguilar-López, R. and Rodríguez-Bollain, A. (2011). Applications of Chaos and Nonlinear Dynamics in Engineering, Vol. 1, Springer-Verlag, Berlin/Heidelberg. 
  25. Mazenc, F. and Dinh, T. (2014). Construction of interval observers for continuous-time systems with discrete measurements, Automatica 50(10): 2555-2560. Zbl1301.93034
  26. Menini, L. and Tornambè, A. (2011). Design of state detectors for nonlinear systems using symmetries and semi-invariants, Systems and Control Letters 60(2): 128-137. Zbl1209.93033
  27. Mobki, H., Sadeghia, M. and Rezazadehb, G. (2015). Design of direct exponential observers for fault detection of nonlinear MEMS tunable capacitor, IJE Transactions A: Basics 28(4): 634-641. 
  28. Morales, A. and Ramirez, J. (2002). A PI observer for a class of nonlinear oscillators, Physics Letters A 297(3-4): 205-209. Zbl0995.65057
  29. Raghavan, S. and Hedrick, J. (1994). Observer design for a class of nonlinear systems, International Journal of Control 59(2): 515-528. Zbl0802.93007
  30. Rauh, A., Butt, S.S. and Aschemann, H. (2013). Nonlinear state observers and extended Kalman filters for battery systems, International Journal of Applied Mathematics and Computer Science 23(3): 539-556, DOI: 10.2478/amcs-2013-0041. Zbl1279.93101
  31. Röbenack, K. and Lynch, A. (2004). An efficient method for observer design with approximately linear error dynamics, International Journal of Control 77(7): 607-612. Zbl1062.93008
  32. Röbenack, K. and Lynch, A.F. (2006). Observer design using a partial nonlinear observer canonical form, International Journal of Applied Mathematics and Computer Science 16(3): 333-343. Zbl1136.93313
  33. Schwaller, B., Ensminger, D., Dresp-Langley, B. and Ragot, J. (2013). State estimation for a class of nonlinear systems, International Journal of Applied Mathematics and Computer Science 23(2): 383-394, DOI: 10.2478/amcs-2013-0029. Zbl1282.93247
  34. Söffker, D., Yu, T. and Müller, P. (1995). State estimation of dynamical systems with nonlinearities by using proportional-integral observers, International Journal of Systems Science 26(9): 1571-1582. Zbl0830.93009
  35. Thabet, R., Raïssi, T., Combastel, C., Efimov, D. and Zolghadri, A. (2014). An effective method to interval observer design for time-varying systems, Automatica 50(10): 2677-2684. Zbl1301.93035
  36. Tornambè, A. (1992). High-gain observers for non-linear systems, International Journal of Systems Science 23(9): 1475-1489. Zbl0768.93013
  37. Tyukina, I., Steurb, E., Nijmeijerc, H. and van Leeuwenb, C. (2013). Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters, Automatica 49(8): 24092423. 
  38. Veluvolu, K., Soh, Y. and Cao, W. (2007). Robust observer with sliding mode estimation for nonlinear uncertain systems, IET Control Theory and Applications 1(5): 15331540. Zbl1134.93032
  39. Zeitz, M. (1985). Canonical forms for nonlinear-systems, in B. Jakubczyk et al. (Eds.), Proceedings of the Conference on Geometric Theory of Nonlinear Control Systems, Wrocław Technical University Press, Wrocław, pp. 255-278. Zbl0593.93011
  40. Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems and Control Letters Archive 9(2): 149-156. Zbl0624.93012
  41. Zheng, G., Boutat, D. and Barbot, J. (2009). Multi-output dependent observability normal form, Nonlinear Analysis: Theory, Methods and Applications 70(1): 404-418. Zbl1152.93015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.