An adaptive output feedback motion tracking controller for robot manipulators: uniform global asymptotic stability and experimentation

Antonio Yarza; Victor Santibanez; Javier Moreno-Valenzuela

International Journal of Applied Mathematics and Computer Science (2013)

  • Volume: 23, Issue: 3, page 599-611
  • ISSN: 1641-876X

Abstract

top
This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking controller, if the reference trajectory is selected in such a way that the regression matrix is persistently exciting. The new scheme has been experimentally implemented with the aim of confirming the theoretical results.

How to cite

top

Antonio Yarza, Victor Santibanez, and Javier Moreno-Valenzuela. "An adaptive output feedback motion tracking controller for robot manipulators: uniform global asymptotic stability and experimentation." International Journal of Applied Mathematics and Computer Science 23.3 (2013): 599-611. <http://eudml.org/doc/262313>.

@article{AntonioYarza2013,
abstract = {This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking controller, if the reference trajectory is selected in such a way that the regression matrix is persistently exciting. The new scheme has been experimentally implemented with the aim of confirming the theoretical results.},
author = {Antonio Yarza, Victor Santibanez, Javier Moreno-Valenzuela},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {adaptive control; robot control; nonlinear control; output feedback; Lyapunov UGAS stability; Lyapunov stability; uniform global asymptotic stability (UGAS)},
language = {eng},
number = {3},
pages = {599-611},
title = {An adaptive output feedback motion tracking controller for robot manipulators: uniform global asymptotic stability and experimentation},
url = {http://eudml.org/doc/262313},
volume = {23},
year = {2013},
}

TY - JOUR
AU - Antonio Yarza
AU - Victor Santibanez
AU - Javier Moreno-Valenzuela
TI - An adaptive output feedback motion tracking controller for robot manipulators: uniform global asymptotic stability and experimentation
JO - International Journal of Applied Mathematics and Computer Science
PY - 2013
VL - 23
IS - 3
SP - 599
EP - 611
AB - This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking controller, if the reference trajectory is selected in such a way that the regression matrix is persistently exciting. The new scheme has been experimentally implemented with the aim of confirming the theoretical results.
LA - eng
KW - adaptive control; robot control; nonlinear control; output feedback; Lyapunov UGAS stability; Lyapunov stability; uniform global asymptotic stability (UGAS)
UR - http://eudml.org/doc/262313
ER -

References

top
  1. Abdessameud, A. and Khelfi, M.F. (2006). A variable structure observer for the control of robot manipulators, International Journal of Applied Mathematics and Computer Science 16(2):189-196. Zbl1111.93056
  2. Arimoto, S., Parra-Vega, V. and Naniwa, T. (1994). A class of linear velocity observers for nonlinear mechanical systems, Asian Control Conference, Tokyo, Japan, pp. 633-636. 
  3. Arimoto, S. (1995a). Fundamental problems of robot control, Part I: Innovation in the realm of robot servo-loops, Robotica 13(1): 19-27. 
  4. Arimoto, S. (1995b). Fundamental problems of robot control, Part II: A nonlinear circuit theory towards an understanding of dexterous motions, Robotica 13(2): 111-122. 
  5. Bańka, S., Dworak, P. and Jaroszewski, K. (2013). Linear adaptive structure for control of a nonlinear MIMO dynamic plant, International Journal of Applied Mathematics and Computer Science 23(1): 47-63, DOI: 10.2478/amcs-2013-0005. Zbl1293.93428
  6. Berghuis, H. and Nijmeijer, H. (1993). A passivity approach to controller-observer design for robots, IEEE Transactions on Robotics and Automation 9(6): 740-754. 
  7. Burkov, I. (1993). Asymptotic stabilization of nonlinear Lagrangian systems without measuring velocities, International Symposium on Active Control in Mechanical Engineering, Lyon, France, pp. 37-41. 
  8. Craig, J., Hsu, P. and Sastry, S. (1987). Adaptive control of mechanical manipulators, International Journal of Robotics Research 6(2): 16-28. 
  9. Daly, J. and Schwarz, H. (2006). Experimental results for adaptive output feedback control, Robotica 24(6): 727-738. 
  10. Kelly, R. (1993). A simple set-point robot controller by using only position measurements, International Federation of Automatic Control World Congress, Sydney, Australia, pp. 173-176. 
  11. Kelly, R., Carelli, R. and Ortega, R. (1989). Adaptive motion control design to robot manipulators: An input-output approach, International Journal of Control 50(6): 2563-2581. Zbl0694.93065
  12. Kelly, R., Santibanez, V. and Loria, A. (2005). Control of Robot Manipulators in Joint Space, Springer-Verlag, Berlin. 
  13. Khalil, H. (2002). Nonlinear Systems, Prentice-Hall, Englewood Cliffs, NJ. Zbl1003.34002
  14. Koditschek, D. (1984). Natural motion for robot arms, Conference on Decision and Control, Las Vegas, NV, USA, pp. 733-735. 
  15. Lim, S., Dawson, D. and Anderson, K. (1996). Re-examining the Nicosia-Tomei robot observer-controller from a backstepping perspective, IEEE Transactions on Control Systems Technology 4(3): 304-310. 
  16. Lopez-Araujo, D., Zavala-Rio, A., Santibanez, V. and Reyes, F. (2012). Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs, International Journal of Control, Automation and Systems 11(1): 105-115. 
  17. Loría, A., Kelly, R. and Teel, A. (2005). Uniform parametric convergence in the adaptive control of mechanical systems, European Journal of Control 11(2): 87-100. Zbl1293.93456
  18. Loria, A.E., Panteley, Popovic D. and Teel A. (2002). δ-Persistency of excitation: A necessary and sufficient condition for uniform attractivity. IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 3506-3511. 
  19. Loria, A. and Nijmeijer, H. (1998). Bounded output feedback tracking control of fully-actuated Euler-Lagrange systems, Systems & Control Letters 33(3): 151-161. Zbl0902.93034
  20. Middleton, R. and Goodwin, G. (1998). Adaptive computed torque control for rigid link manipulators, Systems & Control Letters 10(1): 9-16. Zbl0636.93051
  21. Moreno-Valenzuela, J., Santibanez, V., Orozco-Manriquez, E. and Gonzalez-Hernandez, L. (2010). Theory and experiments of global adaptive output feedback tracking control of manipulators, IET Control Theory and Applications 4(9): 1639-1654. 
  22. Moreno-Valenzuela, J., Santibanez, V., Campa, R. (2008a). A class of OFT controllers for torque-saturated robot manipulators: Lyapunov stability and experimental evaluation, Journal of Intelligent & Robotic Systems 51(1): 65-88. 
  23. Moreno-Valenzuela, J., Santibanez, V., Campa, R. (2008b). On output feedback tracking control of robots manipulators with bounded torque input, International Journal of Control, Automation, and Systems 6(1): 76-85. 
  24. Nicosia, S. and Tomei, P. (1990). Robot control by using only position measurements, IEEE Transactions on Automatic Control 35(9): 1058-1061. Zbl0724.93056
  25. Ortega, R., Loria, A. and Kelly, R. (1995). A semiglobally stable output feedback PI²D regulator for robot manipulators, IEEE Transactions on Automatic Control 40(8): 1432-1436. Zbl0832.93042
  26. Ortega, R. and Spong, M. (1989). Adaptive motion control of rigid robots: A tutorial, Automatica 25(6): 877-888. Zbl0695.93064
  27. Reyes, F. and Kelly, R. (2001). Experimental evaluation of model-based controllers on a direct-drive robot arm, Mechatronics 11(3): 267-282. 
  28. Sadegh, N. and Horowitz, R. (1987). Stability analysis of an adaptive controller for robotic manipulators, International Conference on Robotics and Automation, Raleigh, NC, USA, pp. 1223-1229. 
  29. Santibanez, V. and Kelly, R. (2001). Global asymptotical stability of bounded output feedback tracking control for robot manipulators, IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 1378-1379. 
  30. Santibanez, V. and Kelly, R. (1999). Global convergence of the adaptive PD controller with computed feedforward for robot manipulators, IEEE International Conference on Robotics and Automation, Detroit, MI, USA, pp. 1831-1836. 
  31. Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49-59. 
  32. Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY. 
  33. Witkowska, A. and Śmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematics and Computer Science 22(4): 985-997, DOI: 10.2478/v10006-012-0073-y. Zbl1283.93156
  34. Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2011). Uniform global asymptotic stability of an adaptive output feedback tracking controller for robot manipulators, International Federation of Automatic Control World Congress, Milan, Italy, pp. 14590-14595. Zbl1279.93078
  35. Zavala-Rio, A., Aguinaga-Ruiz, E. and Santibanez, V. (2011). Global trajectory tracking through output feedback for robot manipulators with bounded inputs, Asian Journal of Control 13(3): 430-438. Zbl1234.93081
  36. Zergeroglu, E., Dawson, D.M., de Queiroz, M.S. and Krstic, M. (2000). On global output feedback tracking control of robot manipulators, Proceedings of the IEEE Conference on Decision and Control, Sydney, Australia, pp. 5073-5077. 
  37. Zhang, F., Dawson, D.M., de Queiroz, M.S. and Dixon, W.E. (2000). Global adaptive output feedback tracking control of robot manipulators, IEEE Transactions on Automatic Control 45(6): 1203-1208. Zbl0972.93045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.