Saturating stiffness control of robot manipulators with bounded inputs
María del Carmen Rodríguez-Liñán; Marco Mendoza; Isela Bonilla; César A. Chávez-Olivares
International Journal of Applied Mathematics and Computer Science (2017)
- Volume: 27, Issue: 1, page 79-90
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topMaría del Carmen Rodríguez-Liñán, et al. "Saturating stiffness control of robot manipulators with bounded inputs." International Journal of Applied Mathematics and Computer Science 27.1 (2017): 79-90. <http://eudml.org/doc/288097>.
@article{MaríadelCarmenRodríguez2017,
abstract = {A saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point is presented. The interaction between the robot manipulator and the environment is modeled as spring-like contact forces. The proper behavior of the closed-loop system is validated using a three degree-of-freedom robotic arm.},
author = {María del Carmen Rodríguez-Liñán, Marco Mendoza, Isela Bonilla, César A. Chávez-Olivares},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {bounded inputs; robot manipulator; saturation; stiffness control},
language = {eng},
number = {1},
pages = {79-90},
title = {Saturating stiffness control of robot manipulators with bounded inputs},
url = {http://eudml.org/doc/288097},
volume = {27},
year = {2017},
}
TY - JOUR
AU - María del Carmen Rodríguez-Liñán
AU - Marco Mendoza
AU - Isela Bonilla
AU - César A. Chávez-Olivares
TI - Saturating stiffness control of robot manipulators with bounded inputs
JO - International Journal of Applied Mathematics and Computer Science
PY - 2017
VL - 27
IS - 1
SP - 79
EP - 90
AB - A saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point is presented. The interaction between the robot manipulator and the environment is modeled as spring-like contact forces. The proper behavior of the closed-loop system is validated using a three degree-of-freedom robotic arm.
LA - eng
KW - bounded inputs; robot manipulator; saturation; stiffness control
UR - http://eudml.org/doc/288097
ER -
References
top- Aguiñaga-Ruiz, E., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2009). Global trajectory tracking through static feedback for robot manipulators with bounded inputs, IEEE Transactions on Control Systems Technology 17(4): 934-944.
- Akdoğan, E. and Adli, M.A. (2011). The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot, Mechatronics 21(3): 509-522.
- Belter, D., Łabecki, P., Fankhauser, P. and Siegwart, R. (2016). RGB-D terrain perception and dense mapping for legged robots, International Journal of Applied Mathematics and Computer Science 26(1): 81-97, DOI: 10.1515/amcs-2016-0006. Zbl1336.93111
- Canudas, C., Siciliano, B. and Bastin, G. (2012). Theory of Robot Control, Springer-Verlag, London. Zbl0854.70001
- Caverly, R.J., Zlotnik, D.E., Bridgeman, L.J. and Forbes, J.R. (2014). Saturated proportional derivative control of flexible-joint manipulators, Robotics and ComputerIntegrated Manufacturing 30(6): 658-666.
- Caverly, R.J., Zlotnik, D.E. and Forbes, J.R. (2016). Saturated control of flexible-joint manipulators using a Hammerstein strictly positive real compensator, Robotica 34(06): 1367-1382.
- Chávez-Olivares, C., Reyes, F. and González-Galván, E. (2015). On stiffness regulators with dissipative injection for robot manipulators, International Journal of Advanced Robotic Systems 12(65): 1-15.
- Chávez-Olivares, C., Reyes, F., González-Galván, E., Mendoza, M. and Bonilla, I. (2012). Experimental evaluation of parameter identification schemes on an anthropomorphic direct drive robot, International Journal of Advanced Robotic Systems 9(203): 1-18.
- Dario, P., Guglielmelli, E. and Allotta, B. (1994). Robotics in medicine, IEEE/RSJ/GI International Conference on Intelligent Robots and Systems: Advanced Robotic Systems and the Real World, IROS'94, Munich, Germany, Vol. 2, pp. 739-752.
- Dehghani, S., Taghirad, H. and Darainy, M. (2010). Self-tunning dynamic impedance control for human arm motion, 7th Iranian Conference of Biomedical Engineering (ICBME), Isfahan, Iran, pp. 1-5.
- Deneve, A., Moughamir, S., Afilal, L. and Zaytoon, J. (2008). Control system design of a 3-DOF upper limbs rehabilitation robot, Computer Methods and Programs in Biomedicine 89(2): 202-214.
- Djebrani, S., Benali, A. and Abdessemed, F. (2012). Modelling and control of an omnidirectional mobile manipulator, International Journal of Applied Mathematics and Computer Science 22(3): 601-616, DOI: 10.2478/v10006-012-0046-1. Zbl1302.93153
- Dulęba, I. and Opałka, M. (2013). A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators, International Journal of Applied Mathematics and Computer Science 23(2): 373-382, DOI: 10.2478/amcs-2013-0028.
- Falaki, A. and Towhidkhah, F. (2012). Supervisory model predictive impedance control for human arm movement, 20th Iranian Conference on Electrical Engineering, Tehran, Iran, pp. 1562-1566.
- He, W., Dong, Y. and Sun, C. (2016). Adaptive neural impedance control of a robotic manipulator with input saturation, IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(3): 334-344.
- Hogan, N. (1985). Impedance control: An approach to manipulation. I: Theory, II: Implementation, III: Applications, ASME Journal of Dynamic Systems, Measurement and Control 107(1): 1-24. Zbl0566.93025
- Ju, M.S., Lin, C.C.K., Lin, D.H., Hwang, I.S. and Chen, S.M. (2005). A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot, IEEE Transactions on Neural Systems & Rehabilitation Engineering 13(3): 349-358.
- Kelly, R., Santibáñez, V. and Berghuis, H. (1997). Point-to-point robot control under actuator constraints, Control Engineering Practice 5(11): 1555-1562.
- Kelly, R., Santibáñez, V. and Loría, A. (2005). Control of Robot Manipulators in Joint Space, Springer-Verlag, London.
- Khalil, H. (2002). Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ. Zbl1003.34002
- Kiguchi, K., Imada, Y. and Liyanaje, M. (2007). EMG-based neuro-fuzzy control of a 4-DOF upper-limb power-assist exoskeleton, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, pp. 3040-3043.
- Kurfess, T. (2004). Robotics and Automation Handbook, CRC Press, Boca Raton, FL.
- Li, Y., Ge, S.S., Yang, C., Li, X. and Tee, K.P. (2011). Model-free impedance control for safe human-robot interaction, 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 6021-6026.
- López-Araujo, D.J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2013a). A generalized scheme for the global adaptive regulation of robot manipulators with bounded inputs, Robotica 31(7): 1103-1117.
- López-Araujo, D.J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2013b). Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs, International Journal of Control, Automation, and Systems 11(1): 105-115.
- López-Araujo, D. J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015). A generalized global adaptive tracking control scheme for robot manipulators with bounded inputs, International Journal of Adaptive Control and Signal Processing 29(2): 180-200. Zbl1337.93058
- Mendoza, M., Bonilla, I., Reyes, F. and González-Galván, E. (2012). A Lyapunov-based design tool of impedance controllers for robot manipulators, Kybernetika 48(6): 1136-1155. Zbl1255.68163
- Mendoza, M., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015a). A generalised PID-type control scheme with simple for the global regulation of robot manipulators with tuning constrained inputs, International Journal of Control 88(10): 1995-2012. Zbl1334.93129
- Mendoza, M., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015b). Output-feedback proportional-integral-derivative-type control with simple tuning for the global regulation of robot manipulators with input constraints, IET Control Theory and Applications 9(14): 2097-2106.
- Modares, H., Ranatunga, I., Lewis, F.L. and Popa, D.O. (2016). Optimized assistive human-robot interaction using reinforcement learning, IEEE Transactions on Cybernetics 46(3): 655-667.
- Santibáñez, V. and Kelly, R. (1996). Global regulation for robot manipulators under SP-SD feedback, 1996 IEEE International Conference on Robotics and Automation (ICRA), Minneapolis, MN, USA, pp. 927-932.
- Santibáñez, V., Kelly, R. and Reyes, F. (1998). A new set-point controller with bounded torques for robot manipulators, IEEE Transactions on Industrial Electronics 45(1): 126-133.
- Siciliano, B. and Villani, L. (2012). Robot Force Control, Springer-Verlag, London. Zbl0940.93006
- Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, Wiley, New York, NY.
- Volpe, R. and Khosla, P. (1993). A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Transactions on Automatic Control 38(11): 1634-1650.
- Xu, G., Song, A. and Li, H. (2011). Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network, Journal of Intelligent & Robotic Systems 62(3): 501-525. Zbl1245.93095
- Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2013). An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation, International Journal of Applied Mathematics and Computer Science 23(3): 599-611, DOI: 10.2478/amcs-2013-0045. Zbl1279.93078
- Zavala-Río, A. and Santibáñez, V. (2006). Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs, IEEE Transactions on Control Systems Technology 14(5): 958-965.
- Zavala-Río, A. and Santibáñez, V. (2007). A natural saturating extension of the PD-with-desired-gravity-compensation control law for robot manipulators with bounded inputs, IEEE Transactions on Robotics 23(2): 386-391.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.