Saturating stiffness control of robot manipulators with bounded inputs

María del Carmen Rodríguez-Liñán; Marco Mendoza; Isela Bonilla; César A. Chávez-Olivares

International Journal of Applied Mathematics and Computer Science (2017)

  • Volume: 27, Issue: 1, page 79-90
  • ISSN: 1641-876X

Abstract

top
A saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point is presented. The interaction between the robot manipulator and the environment is modeled as spring-like contact forces. The proper behavior of the closed-loop system is validated using a three degree-of-freedom robotic arm.

How to cite

top

María del Carmen Rodríguez-Liñán, et al. "Saturating stiffness control of robot manipulators with bounded inputs." International Journal of Applied Mathematics and Computer Science 27.1 (2017): 79-90. <http://eudml.org/doc/288097>.

@article{MaríadelCarmenRodríguez2017,
abstract = {A saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point is presented. The interaction between the robot manipulator and the environment is modeled as spring-like contact forces. The proper behavior of the closed-loop system is validated using a three degree-of-freedom robotic arm.},
author = {María del Carmen Rodríguez-Liñán, Marco Mendoza, Isela Bonilla, César A. Chávez-Olivares},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {bounded inputs; robot manipulator; saturation; stiffness control},
language = {eng},
number = {1},
pages = {79-90},
title = {Saturating stiffness control of robot manipulators with bounded inputs},
url = {http://eudml.org/doc/288097},
volume = {27},
year = {2017},
}

TY - JOUR
AU - María del Carmen Rodríguez-Liñán
AU - Marco Mendoza
AU - Isela Bonilla
AU - César A. Chávez-Olivares
TI - Saturating stiffness control of robot manipulators with bounded inputs
JO - International Journal of Applied Mathematics and Computer Science
PY - 2017
VL - 27
IS - 1
SP - 79
EP - 90
AB - A saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point is presented. The interaction between the robot manipulator and the environment is modeled as spring-like contact forces. The proper behavior of the closed-loop system is validated using a three degree-of-freedom robotic arm.
LA - eng
KW - bounded inputs; robot manipulator; saturation; stiffness control
UR - http://eudml.org/doc/288097
ER -

References

top
  1. Aguiñaga-Ruiz, E., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2009). Global trajectory tracking through static feedback for robot manipulators with bounded inputs, IEEE Transactions on Control Systems Technology 17(4): 934-944. 
  2. Akdoğan, E. and Adli, M.A. (2011). The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot, Mechatronics 21(3): 509-522. 
  3. Belter, D., Łabecki, P., Fankhauser, P. and Siegwart, R. (2016). RGB-D terrain perception and dense mapping for legged robots, International Journal of Applied Mathematics and Computer Science 26(1): 81-97, DOI: 10.1515/amcs-2016-0006. Zbl1336.93111
  4. Canudas, C., Siciliano, B. and Bastin, G. (2012). Theory of Robot Control, Springer-Verlag, London. Zbl0854.70001
  5. Caverly, R.J., Zlotnik, D.E., Bridgeman, L.J. and Forbes, J.R. (2014). Saturated proportional derivative control of flexible-joint manipulators, Robotics and ComputerIntegrated Manufacturing 30(6): 658-666. 
  6. Caverly, R.J., Zlotnik, D.E. and Forbes, J.R. (2016). Saturated control of flexible-joint manipulators using a Hammerstein strictly positive real compensator, Robotica 34(06): 1367-1382. 
  7. Chávez-Olivares, C., Reyes, F. and González-Galván, E. (2015). On stiffness regulators with dissipative injection for robot manipulators, International Journal of Advanced Robotic Systems 12(65): 1-15. 
  8. Chávez-Olivares, C., Reyes, F., González-Galván, E., Mendoza, M. and Bonilla, I. (2012). Experimental evaluation of parameter identification schemes on an anthropomorphic direct drive robot, International Journal of Advanced Robotic Systems 9(203): 1-18. 
  9. Dario, P., Guglielmelli, E. and Allotta, B. (1994). Robotics in medicine, IEEE/RSJ/GI International Conference on Intelligent Robots and Systems: Advanced Robotic Systems and the Real World, IROS'94, Munich, Germany, Vol. 2, pp. 739-752. 
  10. Dehghani, S., Taghirad, H. and Darainy, M. (2010). Self-tunning dynamic impedance control for human arm motion, 7th Iranian Conference of Biomedical Engineering (ICBME), Isfahan, Iran, pp. 1-5. 
  11. Deneve, A., Moughamir, S., Afilal, L. and Zaytoon, J. (2008). Control system design of a 3-DOF upper limbs rehabilitation robot, Computer Methods and Programs in Biomedicine 89(2): 202-214. 
  12. Djebrani, S., Benali, A. and Abdessemed, F. (2012). Modelling and control of an omnidirectional mobile manipulator, International Journal of Applied Mathematics and Computer Science 22(3): 601-616, DOI: 10.2478/v10006-012-0046-1. Zbl1302.93153
  13. Dulęba, I. and Opałka, M. (2013). A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators, International Journal of Applied Mathematics and Computer Science 23(2): 373-382, DOI: 10.2478/amcs-2013-0028. 
  14. Falaki, A. and Towhidkhah, F. (2012). Supervisory model predictive impedance control for human arm movement, 20th Iranian Conference on Electrical Engineering, Tehran, Iran, pp. 1562-1566. 
  15. He, W., Dong, Y. and Sun, C. (2016). Adaptive neural impedance control of a robotic manipulator with input saturation, IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(3): 334-344. 
  16. Hogan, N. (1985). Impedance control: An approach to manipulation. I: Theory, II: Implementation, III: Applications, ASME Journal of Dynamic Systems, Measurement and Control 107(1): 1-24. Zbl0566.93025
  17. Ju, M.S., Lin, C.C.K., Lin, D.H., Hwang, I.S. and Chen, S.M. (2005). A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot, IEEE Transactions on Neural Systems & Rehabilitation Engineering 13(3): 349-358. 
  18. Kelly, R., Santibáñez, V. and Berghuis, H. (1997). Point-to-point robot control under actuator constraints, Control Engineering Practice 5(11): 1555-1562. 
  19. Kelly, R., Santibáñez, V. and Loría, A. (2005). Control of Robot Manipulators in Joint Space, Springer-Verlag, London. 
  20. Khalil, H. (2002). Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ. Zbl1003.34002
  21. Kiguchi, K., Imada, Y. and Liyanaje, M. (2007). EMG-based neuro-fuzzy control of a 4-DOF upper-limb power-assist exoskeleton, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, pp. 3040-3043. 
  22. Kurfess, T. (2004). Robotics and Automation Handbook, CRC Press, Boca Raton, FL. 
  23. Li, Y., Ge, S.S., Yang, C., Li, X. and Tee, K.P. (2011). Model-free impedance control for safe human-robot interaction, 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 6021-6026. 
  24. López-Araujo, D.J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2013a). A generalized scheme for the global adaptive regulation of robot manipulators with bounded inputs, Robotica 31(7): 1103-1117. 
  25. López-Araujo, D.J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2013b). Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs, International Journal of Control, Automation, and Systems 11(1): 105-115. 
  26. López-Araujo, D. J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015). A generalized global adaptive tracking control scheme for robot manipulators with bounded inputs, International Journal of Adaptive Control and Signal Processing 29(2): 180-200. Zbl1337.93058
  27. Mendoza, M., Bonilla, I., Reyes, F. and González-Galván, E. (2012). A Lyapunov-based design tool of impedance controllers for robot manipulators, Kybernetika 48(6): 1136-1155. Zbl1255.68163
  28. Mendoza, M., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015a). A generalised PID-type control scheme with simple for the global regulation of robot manipulators with tuning constrained inputs, International Journal of Control 88(10): 1995-2012. Zbl1334.93129
  29. Mendoza, M., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015b). Output-feedback proportional-integral-derivative-type control with simple tuning for the global regulation of robot manipulators with input constraints, IET Control Theory and Applications 9(14): 2097-2106. 
  30. Modares, H., Ranatunga, I., Lewis, F.L. and Popa, D.O. (2016). Optimized assistive human-robot interaction using reinforcement learning, IEEE Transactions on Cybernetics 46(3): 655-667. 
  31. Santibáñez, V. and Kelly, R. (1996). Global regulation for robot manipulators under SP-SD feedback, 1996 IEEE International Conference on Robotics and Automation (ICRA), Minneapolis, MN, USA, pp. 927-932. 
  32. Santibáñez, V., Kelly, R. and Reyes, F. (1998). A new set-point controller with bounded torques for robot manipulators, IEEE Transactions on Industrial Electronics 45(1): 126-133. 
  33. Siciliano, B. and Villani, L. (2012). Robot Force Control, Springer-Verlag, London. Zbl0940.93006
  34. Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, Wiley, New York, NY. 
  35. Volpe, R. and Khosla, P. (1993). A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Transactions on Automatic Control 38(11): 1634-1650. 
  36. Xu, G., Song, A. and Li, H. (2011). Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network, Journal of Intelligent & Robotic Systems 62(3): 501-525. Zbl1245.93095
  37. Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2013). An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation, International Journal of Applied Mathematics and Computer Science 23(3): 599-611, DOI: 10.2478/amcs-2013-0045. Zbl1279.93078
  38. Zavala-Río, A. and Santibáñez, V. (2006). Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs, IEEE Transactions on Control Systems Technology 14(5): 958-965. 
  39. Zavala-Río, A. and Santibáñez, V. (2007). A natural saturating extension of the PD-with-desired-gravity-compensation control law for robot manipulators with bounded inputs, IEEE Transactions on Robotics 23(2): 386-391. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.