Effective formulas for complex geodesics in generalized pseudoellipsoids with applications

Włodzimierz Zwonek

Annales Polonici Mathematici (1995)

  • Volume: 61, Issue: 3, page 261-294
  • ISSN: 0066-2216

Abstract

top
We introduce a class of generalized pseudoellipsoids and we get formulas for their complex geodesics in the convex case. Using these formulas we get a description of automorphisms of the pseudoellipsoids. We also solve the problem of biholomorphic equivalence of convex complex ellipsoids without any sophisticated machinery.

How to cite

top

Włodzimierz Zwonek. "Effective formulas for complex geodesics in generalized pseudoellipsoids with applications." Annales Polonici Mathematici 61.3 (1995): 261-294. <http://eudml.org/doc/262346>.

@article{WłodzimierzZwonek1995,
abstract = {We introduce a class of generalized pseudoellipsoids and we get formulas for their complex geodesics in the convex case. Using these formulas we get a description of automorphisms of the pseudoellipsoids. We also solve the problem of biholomorphic equivalence of convex complex ellipsoids without any sophisticated machinery.},
author = {Włodzimierz Zwonek},
journal = {Annales Polonici Mathematici},
keywords = {complex geodesics; generalized pseudoellipsoids; biholomorphic equivalence of ellipsoids},
language = {eng},
number = {3},
pages = {261-294},
title = {Effective formulas for complex geodesics in generalized pseudoellipsoids with applications},
url = {http://eudml.org/doc/262346},
volume = {61},
year = {1995},
}

TY - JOUR
AU - Włodzimierz Zwonek
TI - Effective formulas for complex geodesics in generalized pseudoellipsoids with applications
JO - Annales Polonici Mathematici
PY - 1995
VL - 61
IS - 3
SP - 261
EP - 294
AB - We introduce a class of generalized pseudoellipsoids and we get formulas for their complex geodesics in the convex case. Using these formulas we get a description of automorphisms of the pseudoellipsoids. We also solve the problem of biholomorphic equivalence of convex complex ellipsoids without any sophisticated machinery.
LA - eng
KW - complex geodesics; generalized pseudoellipsoids; biholomorphic equivalence of ellipsoids
UR - http://eudml.org/doc/262346
ER -

References

top
  1. [B] S. Bell, The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270 (1983), 685-691. Zbl0482.32007
  2. [BFKKMP] B. E. Blank, D. Fan, D. Klein, S. G. Krantz, D. Ma and M.-Y. Pang, The Kobayashi metric of a complex ellipsoid in ℂ², Experimental Math. 1 (1992), 47-55. Zbl0783.32012
  3. [D] S. Dineen, The Schwarz Lemma, Clarendon Press, 1989. Zbl0708.46046
  4. [DT] S. Dineen and R. M. Timoney, Complex geodesics on convex domains, in: Progress in Functional Analysis, K. D. Bierstedt, J. Bonet, J. Horváth and M. Maestre (eds.), Elsevier, 1992, 333-365. Zbl0785.46044
  5. [DP] G. Dini and A. S. Primicerio, Localization principle of automorphisms on generalized pseudoellipsoids, preprint. Zbl0943.32006
  6. [Ga] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. 
  7. [Ge] G. Gentili, Regular complex geodesics in the domain D n = ( z , . . . , z n ) n : | z | + . . . + | z n | < 1 , in: Lecture Notes in Math. 1275, Springer, 1987, 235-252. 
  8. [JP] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993. Zbl0789.32001
  9. [JPZ] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543. Zbl0812.32010
  10. [KU] W. Kaup and H. Upmeier, Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129-133. Zbl0337.32012
  11. [KKM] A. Kodama, S. Krantz and D. Ma, A characterization of generalized complex ellipsoids in n and related results, Indiana Univ. Math. J. 41 (1992), 173-195. 
  12. [L] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-479. 
  13. [N] T. Naruki, The holomorphic equivalence problem for a class of Reinhardt domains, Publ. RIMS Kyoto Univ. 4 (1968), 527-543. Zbl0199.41101
  14. [P] E. A. Poletskii, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disk, Michigan Math. J. 30 (1983), 317-333. 
  15. [R] W. Rudin, Holomorphic maps that extend to automorphisms of a ball, Proc. Amer. Math. Soc. 81 (1981), 429-432. Zbl0497.32011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.