A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets
Przemysław Śliwiński; Zygmunt Hasiewicz; Paweł Wachel
International Journal of Applied Mathematics and Computer Science (2013)
- Volume: 23, Issue: 3, page 507-520
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Capobianco, E. (2002). Hammerstein system representation of financial volatility processes, The European Physical Journal B: Condensed Matter 27(2): 201-211.
- Chen, H.-F. (2004). Pathwise convergence of recursive identification algorithms for Hammerstein systems, IEEE Transactions on Automatic Control 49(10): 1641-1649.
- Chen, H.-F. (2010). Recursive identification for stochastic Hammerstein systems, in F. Giri and E.W. Bai (Eds.), Block-oriented Nonlinear System Identification, Lecture Notes in Control and Information Sciences, Vol. 404, Springer-Verlag, Berlin/Heidelberg, pp. 69-87. Zbl1216.93100
- Chen, S., Billings, S.A. and Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification, International Journal of Control 50(5): 1873-1896. Zbl0686.93093
- Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423-430, DOI: 10.2478/v10006-011-0031-0. Zbl1234.93036
- Clancy, E.A., Liu, L., Liu, P. and Moyer, D.V.Z. (2012). Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models, IEEE Transactions on Biomedical Engineering 59(1): 205-212.
- Coca, D. and Billings, S.A. (2001). Non-linear system identification using wavelet multiresolution models, International Journal of Control 74(18): 1718-1736. Zbl1024.93061
- Gallman, P. (1975). An iterative method for the identification of nonlinear systems using a Uryson model, IEEE Transactions on Automatic Control 20(6): 771-775. Zbl0324.93016
- Gomes, S.M. and Cortina, E. (1995). Some results on the convergence of sampling series based on convolution integrals, SIAM Journal on Mathematical Analysis 26(5): 1386-1402. Zbl0844.42018
- Greblicki, W. (2002). Stochastic approximation in nonparametric identification of Hammerstein systems, IEEE Transactions on Automatic Control 47(11): 1800-1810.
- Greblicki, W. (2004). Hammerstein system identification with stochastic approximation, International Journal of Modelling and Simulation 24(2): 131-138. Zbl1070.93047
- Greblicki, W. and Pawlak, M. (1986). Identification of discrete Hammerstein system using kernel regression estimates, IEEE Transactions on Automatic Control 31(1): 74-77. Zbl0584.93066
- Greblicki, W. and Pawlak, M. (1987). Necessary and sufficient consistency conditions for a recursive kernel regression estimate, Journal of Multivariate Analysis 23(1): 67-76. Zbl0627.62040
- Greblicki, W. and Pawlak, M. (1989). Recursive nonparametric identification of Hammerstein systems, Journal of the Franklin Institute 326(4): 461-481. Zbl0687.93074
- Greblicki, W. and Pawlak, M. (2008). Nonparametric System Identification, Cambridge University Press, New York, NY. Zbl1172.93001
- Györfi, L., Kohler, M., Krzyżak, A. and Walk, H. (2002). A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York, NY. Zbl1021.62024
- Hasiewicz, Z. (1999). Hammerstein system identification by the Haar multiresolution approximation, International Journal of Adaptive Control and Signal Processing 13(8): 697-717. Zbl0953.93021
- Hasiewicz, Z. (2000). Modular neural networks for non-linearity recovering by the Haar approximation, Neural Networks 13(10): 1107-1133.
- Hasiewicz, Z., Pawlak, M. and Śliwiński, P. (2005). Non-parametric identification of non-linearities in block-oriented complex systems by orthogonal wavelets with compact support, IEEE Transactions on Circuits and Systems I: Regular Papers 52(1): 427-442.
- Hasiewicz, Z. and Sliwiński, P. (2002). Identification of non-linear characteristics of a class of block-oriented non-linear systems via Daubechies wavelet-based models, International Journal of Systems Science 33(14): 1121-1144. Zbl1060.93034
- Jyothi, S.N. and Chidambaram, M. (2000). Identification of Hammerstein model for bioreactors with input multiplicities, Bioprocess Engineering 23(4): 323-326.
- Krzyżak, A. (1986). The rates of convergence of kernel regression estimates and classification rules, IEEE Transactions on Information Theory 32(5): 668-679. Zbl0614.62050
- Krzyżak, A. (1992). Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation, IEEE Transactions on Information Theory 38(4): 1323-1338. Zbl0754.62022
- Krzyżak, A. (1993). Identification of nonlinear block-oriented systems by the recursive kernel estimate, Journal of the Franklin Institute 330(3): 605-627. Zbl0812.93070
- Krzyżak, A. and Pawlak, M. (1984). Distribution-free consistency of a nonparametric kernel regression estimate and classification, IEEE Transactions on Information Theory 30(1): 78-81. Zbl0534.62022
- Kukreja, S., Kearney, R. and Galiana, H. (2005). A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR, IEEE Transactions on Biomedical Engineering 52(3): 431-444.
- Kushner, H.J. and Yin, G.G. (2003). Stochastic Approximation and Recursive Algorithms and Applications, 2nd Edn., Stochastic Modelling and Applied Probability, Springer, New York, NY. Zbl1026.62084
- Lortie, M. and Kearney, R.E. (2001). Identification of time-varying Hammerstein systems from ensemble data, Annals of Biomedical Engineering 29(2): 619-635.
- Mallat, S.G. (1998). A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA. Zbl0937.94001
- Marmarelis, V.Z. (2004). Nonlinear Dynamic Modeling of Physiological Systems, IEEE Press Series on Biomedical Engineering, Wiley-IEEE Press, Piscataway, NJ.
- Nordsjo, A. and Zetterberg, L. (2001). Identification of certain time-varying nonlinear Wiener and Hammerstein systems, IEEE Transactions on Signal Processing 49(3): 577-592.
- Patan, K. and Korbicz, J. (2012). Nonlinear model predictive control of a boiler unit: A fault tolerant control study, International Journal of Applied Mathematics and Computer Science 22(1): 225-237, DOI: 10.2478/v10006-012-0017-6. Zbl1273.93071
- Pawlak, M. and Hasiewicz, Z. (1998). Nonlinear system identification by the Haar multiresolution analysis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45(9): 945-961. Zbl0952.93021
- Pawlak, M., Rafajłowicz, E. and Krzyżak, A. (2003). Postfiltering versus prefiltering for signal recovery from noisy samples, IEEE Transactions on Information Theory 49(12): 3195-3212. Zbl1301.94024
- Rutkowski, L. (1984). On nonparametric identification with prediction of time-varying systems, IEEE Transactions on Automatic Control 29(1): 58-60. Zbl0547.93071
- Rutkowski, L. (2004). Generalized regression neural networks in time-varying environment, IEEE Transactions on Neural Networks 15(3): 576-596.
- Saeedi, H., Mollahasani, N., Moghadam, M.M. and Chuev, G.N. (2011). An operational Haar wavelet method for solving fractional Volterra integral equations, International Journal of Applied Mathematics and Computer Science 21(3): 535-547, DOI: 10.2478/v10006-011-0042-x. Zbl1233.65100
- Sansone, G. (1959). Orthogonal Functions, Interscience, New York, NY. Zbl0084.06106
- Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics, Wiley, New York, NY. Zbl0538.62002
- Skubalska-Rafajłowicz, E. (2001). Pattern recognition algorithms based on space-filling curves and orthogonal expansions, IEEE Transactions on Information Theory 47(5): 1915-1927. Zbl1014.68141
- Śliwiński, P. (2010). On-line wavelet estimation of Hammerstein system nonlinearity, International Journal of Applied Mathematics and Computer Science 20(3): 513-523, DOI: 10.2478/v10006-010-0038-y. Zbl1211.93045
- Śliwiński, P. (2013). Nonlinear System Identification by Haar Wavelets, Lecture Notes in Statistics, Vol. 210, Springer-Verlag, Heidelberg. Zbl1284.93244
- Stone, C.J. (1980). Optimal rates of convergence for nonparametric regression, Annals of Statistics 8(6): 1348-1360. Zbl0451.62033
- Szego, G. (1974). Orthogonal Polynomials, 3rd Edn., American Mathematical Society, Providence, RI. Zbl65.0278.03
- Van der Vaart, A. (2000). Asymptotic Statistics, Cambridge University Press, Cambridge. Zbl0910.62001
- Vörös, J. (2003). Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones, IEEE Transactions on Automatic Control 48(12): 2203-2206.
- Walter, G.G. and Shen, X. (2001). Wavelets and Other Orthogonal Systems With Applications, 2nd Edn., Chapman & Hall, Boca Raton, FL. Zbl1005.42018
- Westwick, D.T. and Kearney, R.E. (2003). Identification of Nonlinear Physiological Systems, IEEE Press Series on Biomedical Engineering, Wiley-IEEE Press, Piscataway, NJ. Zbl0758.92001
- Wheeden, R. L. and Zygmund, A. (1977). Measure and Integral: An Introduction to Real Analysis, Pure and Applied Mathematics, Marcel Dekker Inc., New York, NY. Zbl0362.26004
- Zhou, D. and DeBrunner, V.E. (2007). Novel adaptive nonlinear predistorters based on the direct learning algorithm, IEEE Transactions on Signal Processing 55(1): 120-133.