A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets

Przemysław Śliwiński; Zygmunt Hasiewicz; Paweł Wachel

International Journal of Applied Mathematics and Computer Science (2013)

  • Volume: 23, Issue: 3, page 507-520
  • ISSN: 1641-876X

Abstract

top
A simple semi-recursive routine for nonlinearity recovery in Hammerstein systems is proposed. The identification scheme is based on the Haar wavelet kernel and possesses a simple and compact form. The convergence of the algorithm is established and the asymptotic rate of convergence (independent of the input density smoothness) is shown for piecewiseLipschitz nonlinearities. The numerical stability of the algorithm is verified. Simulation experiments for a small and moderate number of input-output data are presented and discussed to illustrate the applicability of the routine.

How to cite

top

Przemysław Śliwiński, Zygmunt Hasiewicz, and Paweł Wachel. "A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets." International Journal of Applied Mathematics and Computer Science 23.3 (2013): 507-520. <http://eudml.org/doc/262383>.

@article{PrzemysławŚliwiński2013,
abstract = {A simple semi-recursive routine for nonlinearity recovery in Hammerstein systems is proposed. The identification scheme is based on the Haar wavelet kernel and possesses a simple and compact form. The convergence of the algorithm is established and the asymptotic rate of convergence (independent of the input density smoothness) is shown for piecewiseLipschitz nonlinearities. The numerical stability of the algorithm is verified. Simulation experiments for a small and moderate number of input-output data are presented and discussed to illustrate the applicability of the routine.},
author = {Przemysław Śliwiński, Zygmunt Hasiewicz, Paweł Wachel},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {Hammerstein system; non-parametric recursive identification; Haar orthogonal expansion; convergence analysis; numerical stability},
language = {eng},
number = {3},
pages = {507-520},
title = {A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets},
url = {http://eudml.org/doc/262383},
volume = {23},
year = {2013},
}

TY - JOUR
AU - Przemysław Śliwiński
AU - Zygmunt Hasiewicz
AU - Paweł Wachel
TI - A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets
JO - International Journal of Applied Mathematics and Computer Science
PY - 2013
VL - 23
IS - 3
SP - 507
EP - 520
AB - A simple semi-recursive routine for nonlinearity recovery in Hammerstein systems is proposed. The identification scheme is based on the Haar wavelet kernel and possesses a simple and compact form. The convergence of the algorithm is established and the asymptotic rate of convergence (independent of the input density smoothness) is shown for piecewiseLipschitz nonlinearities. The numerical stability of the algorithm is verified. Simulation experiments for a small and moderate number of input-output data are presented and discussed to illustrate the applicability of the routine.
LA - eng
KW - Hammerstein system; non-parametric recursive identification; Haar orthogonal expansion; convergence analysis; numerical stability
UR - http://eudml.org/doc/262383
ER -

References

top
  1. Capobianco, E. (2002). Hammerstein system representation of financial volatility processes, The European Physical Journal B: Condensed Matter 27(2): 201-211. 
  2. Chen, H.-F. (2004). Pathwise convergence of recursive identification algorithms for Hammerstein systems, IEEE Transactions on Automatic Control 49(10): 1641-1649. 
  3. Chen, H.-F. (2010). Recursive identification for stochastic Hammerstein systems, in F. Giri and E.W. Bai (Eds.), Block-oriented Nonlinear System Identification, Lecture Notes in Control and Information Sciences, Vol. 404, Springer-Verlag, Berlin/Heidelberg, pp. 69-87. Zbl1216.93100
  4. Chen, S., Billings, S.A. and Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification, International Journal of Control 50(5): 1873-1896. Zbl0686.93093
  5. Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423-430, DOI: 10.2478/v10006-011-0031-0. Zbl1234.93036
  6. Clancy, E.A., Liu, L., Liu, P. and Moyer, D.V.Z. (2012). Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models, IEEE Transactions on Biomedical Engineering 59(1): 205-212. 
  7. Coca, D. and Billings, S.A. (2001). Non-linear system identification using wavelet multiresolution models, International Journal of Control 74(18): 1718-1736. Zbl1024.93061
  8. Gallman, P. (1975). An iterative method for the identification of nonlinear systems using a Uryson model, IEEE Transactions on Automatic Control 20(6): 771-775. Zbl0324.93016
  9. Gomes, S.M. and Cortina, E. (1995). Some results on the convergence of sampling series based on convolution integrals, SIAM Journal on Mathematical Analysis 26(5): 1386-1402. Zbl0844.42018
  10. Greblicki, W. (2002). Stochastic approximation in nonparametric identification of Hammerstein systems, IEEE Transactions on Automatic Control 47(11): 1800-1810. 
  11. Greblicki, W. (2004). Hammerstein system identification with stochastic approximation, International Journal of Modelling and Simulation 24(2): 131-138. Zbl1070.93047
  12. Greblicki, W. and Pawlak, M. (1986). Identification of discrete Hammerstein system using kernel regression estimates, IEEE Transactions on Automatic Control 31(1): 74-77. Zbl0584.93066
  13. Greblicki, W. and Pawlak, M. (1987). Necessary and sufficient consistency conditions for a recursive kernel regression estimate, Journal of Multivariate Analysis 23(1): 67-76. Zbl0627.62040
  14. Greblicki, W. and Pawlak, M. (1989). Recursive nonparametric identification of Hammerstein systems, Journal of the Franklin Institute 326(4): 461-481. Zbl0687.93074
  15. Greblicki, W. and Pawlak, M. (2008). Nonparametric System Identification, Cambridge University Press, New York, NY. Zbl1172.93001
  16. Györfi, L., Kohler, M., Krzyżak, A. and Walk, H. (2002). A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York, NY. Zbl1021.62024
  17. Hasiewicz, Z. (1999). Hammerstein system identification by the Haar multiresolution approximation, International Journal of Adaptive Control and Signal Processing 13(8): 697-717. Zbl0953.93021
  18. Hasiewicz, Z. (2000). Modular neural networks for non-linearity recovering by the Haar approximation, Neural Networks 13(10): 1107-1133. 
  19. Hasiewicz, Z., Pawlak, M. and Śliwiński, P. (2005). Non-parametric identification of non-linearities in block-oriented complex systems by orthogonal wavelets with compact support, IEEE Transactions on Circuits and Systems I: Regular Papers 52(1): 427-442. 
  20. Hasiewicz, Z. and Sliwiński, P. (2002). Identification of non-linear characteristics of a class of block-oriented non-linear systems via Daubechies wavelet-based models, International Journal of Systems Science 33(14): 1121-1144. Zbl1060.93034
  21. Jyothi, S.N. and Chidambaram, M. (2000). Identification of Hammerstein model for bioreactors with input multiplicities, Bioprocess Engineering 23(4): 323-326. 
  22. Krzyżak, A. (1986). The rates of convergence of kernel regression estimates and classification rules, IEEE Transactions on Information Theory 32(5): 668-679. Zbl0614.62050
  23. Krzyżak, A. (1992). Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation, IEEE Transactions on Information Theory 38(4): 1323-1338. Zbl0754.62022
  24. Krzyżak, A. (1993). Identification of nonlinear block-oriented systems by the recursive kernel estimate, Journal of the Franklin Institute 330(3): 605-627. Zbl0812.93070
  25. Krzyżak, A. and Pawlak, M. (1984). Distribution-free consistency of a nonparametric kernel regression estimate and classification, IEEE Transactions on Information Theory 30(1): 78-81. Zbl0534.62022
  26. Kukreja, S., Kearney, R. and Galiana, H. (2005). A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR, IEEE Transactions on Biomedical Engineering 52(3): 431-444. 
  27. Kushner, H.J. and Yin, G.G. (2003). Stochastic Approximation and Recursive Algorithms and Applications, 2nd Edn., Stochastic Modelling and Applied Probability, Springer, New York, NY. Zbl1026.62084
  28. Lortie, M. and Kearney, R.E. (2001). Identification of time-varying Hammerstein systems from ensemble data, Annals of Biomedical Engineering 29(2): 619-635. 
  29. Mallat, S.G. (1998). A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA. Zbl0937.94001
  30. Marmarelis, V.Z. (2004). Nonlinear Dynamic Modeling of Physiological Systems, IEEE Press Series on Biomedical Engineering, Wiley-IEEE Press, Piscataway, NJ. 
  31. Nordsjo, A. and Zetterberg, L. (2001). Identification of certain time-varying nonlinear Wiener and Hammerstein systems, IEEE Transactions on Signal Processing 49(3): 577-592. 
  32. Patan, K. and Korbicz, J. (2012). Nonlinear model predictive control of a boiler unit: A fault tolerant control study, International Journal of Applied Mathematics and Computer Science 22(1): 225-237, DOI: 10.2478/v10006-012-0017-6. Zbl1273.93071
  33. Pawlak, M. and Hasiewicz, Z. (1998). Nonlinear system identification by the Haar multiresolution analysis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45(9): 945-961. Zbl0952.93021
  34. Pawlak, M., Rafajłowicz, E. and Krzyżak, A. (2003). Postfiltering versus prefiltering for signal recovery from noisy samples, IEEE Transactions on Information Theory 49(12): 3195-3212. Zbl1301.94024
  35. Rutkowski, L. (1984). On nonparametric identification with prediction of time-varying systems, IEEE Transactions on Automatic Control 29(1): 58-60. Zbl0547.93071
  36. Rutkowski, L. (2004). Generalized regression neural networks in time-varying environment, IEEE Transactions on Neural Networks 15(3): 576-596. 
  37. Saeedi, H., Mollahasani, N., Moghadam, M.M. and Chuev, G.N. (2011). An operational Haar wavelet method for solving fractional Volterra integral equations, International Journal of Applied Mathematics and Computer Science 21(3): 535-547, DOI: 10.2478/v10006-011-0042-x. Zbl1233.65100
  38. Sansone, G. (1959). Orthogonal Functions, Interscience, New York, NY. Zbl0084.06106
  39. Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics, Wiley, New York, NY. Zbl0538.62002
  40. Skubalska-Rafajłowicz, E. (2001). Pattern recognition algorithms based on space-filling curves and orthogonal expansions, IEEE Transactions on Information Theory 47(5): 1915-1927. Zbl1014.68141
  41. Śliwiński, P. (2010). On-line wavelet estimation of Hammerstein system nonlinearity, International Journal of Applied Mathematics and Computer Science 20(3): 513-523, DOI: 10.2478/v10006-010-0038-y. Zbl1211.93045
  42. Śliwiński, P. (2013). Nonlinear System Identification by Haar Wavelets, Lecture Notes in Statistics, Vol. 210, Springer-Verlag, Heidelberg. Zbl1284.93244
  43. Stone, C.J. (1980). Optimal rates of convergence for nonparametric regression, Annals of Statistics 8(6): 1348-1360. Zbl0451.62033
  44. Szego, G. (1974). Orthogonal Polynomials, 3rd Edn., American Mathematical Society, Providence, RI. Zbl65.0278.03
  45. Van der Vaart, A. (2000). Asymptotic Statistics, Cambridge University Press, Cambridge. Zbl0910.62001
  46. Vörös, J. (2003). Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones, IEEE Transactions on Automatic Control 48(12): 2203-2206. 
  47. Walter, G.G. and Shen, X. (2001). Wavelets and Other Orthogonal Systems With Applications, 2nd Edn., Chapman & Hall, Boca Raton, FL. Zbl1005.42018
  48. Westwick, D.T. and Kearney, R.E. (2003). Identification of Nonlinear Physiological Systems, IEEE Press Series on Biomedical Engineering, Wiley-IEEE Press, Piscataway, NJ. Zbl0758.92001
  49. Wheeden, R. L. and Zygmund, A. (1977). Measure and Integral: An Introduction to Real Analysis, Pure and Applied Mathematics, Marcel Dekker Inc., New York, NY. Zbl0362.26004
  50. Zhou, D. and DeBrunner, V.E. (2007). Novel adaptive nonlinear predistorters based on the direct learning algorithm, IEEE Transactions on Signal Processing 55(1): 120-133. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.