An operational Haar wavelet method for solving fractional Volterra integral equations
Habibollah Saeedi; Nasibeh Mollahasani; Mahmoud Mohseni Moghadam; Gennady N. Chuev
International Journal of Applied Mathematics and Computer Science (2011)
- Volume: 21, Issue: 3, page 535-547
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Abdalkhania, J. (1990). Numerical approach to the solution of Abel integral equations of the second kind with nonsmooth solution, Journal of Computational and Applied Mathematics 29(3): 249-255.
- Akansu, A.N. and Haddad, R.A. (1981). Multiresolution Signal Decomposition, Academic Press Inc., San Diego, CA. Zbl0947.94001
- Bagley, R.L. and Torvik, P.J. (1985). Fractional calculus in the transient analysis of viscoelastically damped structures, American Institute of Aeronautics and Astronautics Journal 23(6): 918-925. Zbl0562.73071
- Baillie, R.T. (1996). Long memory processes and fractional integration in econometrics, Journal of Econometrics 73(1): 5-59. Zbl0854.62099
- Baratella, P. and Orsi, A.P. (2004). New approach to the numerical solution of weakly singular Volterra integral equations, Journal of Computational and Applied Mathematics 163(2): 401-418. Zbl1038.65144
- Brunner, H. (1984). The numerical solution of integral equations with weakly singular kernels, in D.F. GriMths (Ed.), Numerical Analysis, Lecture Notes in Mathematics, Vol. 1066, Springer, Berlin, pp. 50-71. Zbl0543.65090
- Chen, C.F. and Hsiao, C.H. (1997). Haar wavelet method for solving lumped and distributed parameter systems, IEE Proceedings: Control Theory and Applications 144(1): 87-94. Zbl0880.93014
- Chena, W., Suna, H., Zhang, X. and Korŏsak, D. (2010). Anomalous diffusion modeling by fractal and fractional derivatives, Computers & Mathematics with Applications 59(5): 265-274.
- Chiodo, S., Chuev, G.N., Erofeeva, S.E., Fedorov, M.V., Russo, N. and Sicilia, E. (2007). Comparative study of electrostatic solvent response by RISM and PCM methods, International Journal of Quantum Chemistry 107: 265-274.
- Chow, T.S. (2005). Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, Physics Letters A 342(1-2): 148-155.
- Chuev, G.N., Fedorov, M.V. and Crain, J. (2007). Improved estimates for hydration free energy obtained by the reference interaction site model, Chemical Physics Letters 448: 198-202.
- Chuev, G.N., Fedorov, M.V., Chiodo, S., Russo, N. and Sicilia, E. (2008). Hydration of ionic species studied by the reference interaction site model with a repulsive bridge correction, Journal of Computational Chemistry 29(14): 2406-2415.
- Chuev, G.N., Chiodo, S., Fedorov, M.V., Russo, N. and Sicilia, E. (2006). Quasilinear RISM-SCF approach for computing solvation free energy of molecular ions, Chemical Physics Letters 418: 485-489.
- Dixon, J. (1985). On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non-smooth solution, BIT 25(4): 624-634. Zbl0584.65091
- Hsiao, C.H. and Wu, S.P. (2007). Numerical solution of timevarying functional differential equations via Haar wavelets, Applied Mathematics and Computation 188(1): 1049-1058. Zbl1118.65077
- Lepik, Ü. and Tamme, E. (2004). Application of the Haar wavelets for solution of linear integral equations, Dynamical Systems and Applications, Proceedings, Antalya, Turkey, pp. 494-507.
- Lepik, Ü. (2009). Solving fractional integral equations by the Haar wavelet method, Applied Mathematics and Computation 214(2): 468-478. Zbl1170.65106
- Li, C. and Wang, Y. (2009). Numerical algorithm based on Adomian decomposition for fractional differential equations, Computers & Mathematics with Applications 57(10): 1672-1681. Zbl1186.65110
- Magin, R.L. (2004). Fractional calculus in bioengineering. Part 2, Critical Reviews in Bioengineering 32: 105-193.
- Mainardi, F. (1997). Fractional calculus: ‘Some basic problems in continuum and statistical mechanics', in A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, NY. Zbl0917.73004
- Mandelbrot, B. (1967). Some noises with 1/f spectrum, a bridge between direct current and white noise, IEEE Transactions on Information Theory 13: 289-298. Zbl0148.40507
- Maleknejad, K. and Mirzaee, F. (2005). Using rationalized Haar wavelet for solving linear integral equations, Applied Mathematics and Computation 160(2): 579-587. Zbl1067.65150
- Meral, F.C., Royston, T.J. and Magin, R. (2010). Fractional calculus in viscoelasticity: An experimental study, Communications in Nonlinear Science and Numerical Simulation 15(4): 939-945. Zbl1221.74012
- Metzler, R. and Nonnenmacher, T.F. (2003). Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials, International Journal of Plasticity 19(7): 941-959. Zbl1090.74673
- Miller, K. and Feldstein, A. (1971). Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM Journal on Mathematical Analysis 2: 242-258. Zbl0217.15602
- Miller, K. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, NY. Zbl0789.26002
- Pandey, R.K., Singh, O.P. and Singh, V.K. (2009). Efficient algorithms to solve singular integral equations of Abel type, Computers and Mathematics with Applications 57(4): 664-676. Zbl1165.45303
- Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY. Zbl0924.34008
- Strang, G. (1989). Wavelets and dilation equations, SIAM Review 31(4): 614-627. Zbl0683.42030
- Vainikko, G. and Pedas, A. (1981). The properties of solutions of weakly singular integral equations, Journal of the Australian Mathematical Society, Series B: Applied Mathematics 22: 419-430. Zbl0475.65085
- Vetterli, M. and Kovacevic, J. (1995). Wavelets and Subband Coding, Prentice Hall, Englewood Cliffs, NJ. Zbl0885.94002
- Yousefi, S.A. (2006). Numerical solution of Abel's integral equation by using Legendre wavelets, Applied Mathematics and Computation 175(1): 574-580. Zbl1088.65124
- Zaman, K.B.M.Q. and Yu, J.C. (1995). Power spectral density of subsonic jetnoise, Journal of Sound and Vibration 98(4): 519-537.
Citations in EuDML Documents
top- Babak Shiri, Sedaghat Shahmorad, Gholamreza Hojjati, Convergence analysis of piecewise continuous collocation methods for higher index integral algebraic equations of the Hessenberg type
- Przemysław Śliwiński, Zygmunt Hasiewicz, Paweł Wachel, A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets
- Rafał Stanisławski, Krzysztof J. Latawiec, Normalized finite fractional differences: Computational and accuracy breakthroughs