The kaehlerian structures and reproducing kernels

Anna Krok; Tomasz Mazur

Annales Polonici Mathematici (1991)

  • Volume: 55, Issue: 1, page 221-224
  • ISSN: 0066-2216

Abstract

top
It is shown that one can define a Hilbert space structure over a kaehlerian manifold with global potential in a natural way.

How to cite

top

Anna Krok, and Tomasz Mazur. "The kaehlerian structures and reproducing kernels." Annales Polonici Mathematici 55.1 (1991): 221-224. <http://eudml.org/doc/262417>.

@article{AnnaKrok1991,
abstract = {It is shown that one can define a Hilbert space structure over a kaehlerian manifold with global potential in a natural way.},
author = {Anna Krok, Tomasz Mazur},
journal = {Annales Polonici Mathematici},
keywords = {kaehlerian manifold; kaehlerian potential; positive definite function; Bergman function; reproducing kernel; reproducing kernels; Hilbert space structure over a Kählerian manifold with global potential},
language = {eng},
number = {1},
pages = {221-224},
title = {The kaehlerian structures and reproducing kernels},
url = {http://eudml.org/doc/262417},
volume = {55},
year = {1991},
}

TY - JOUR
AU - Anna Krok
AU - Tomasz Mazur
TI - The kaehlerian structures and reproducing kernels
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 221
EP - 224
AB - It is shown that one can define a Hilbert space structure over a kaehlerian manifold with global potential in a natural way.
LA - eng
KW - kaehlerian manifold; kaehlerian potential; positive definite function; Bergman function; reproducing kernel; reproducing kernels; Hilbert space structure over a Kählerian manifold with global potential
UR - http://eudml.org/doc/262417
ER -

References

top
  1. [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1956), 337-404. Zbl0037.20701
  2. [2] S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., Math. Surveys 5, Amer. Math. Soc., 1970. Zbl0208.34302
  3. [3] S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math. 169 (1933), 1-42. 
  4. [4] S. Chern, Complex Manifolds without Potential Theory, 2nd ed., Springer, 1978. Zbl0158.33002
  5. [5] W. Chojnacki, On some holomorphic dynamical systems, Quart. J. Math. Oxford Ser. (2) 39 (1988), 159-172. Zbl0667.47018
  6. [6] S. Janson, J. Peetre and R. Rochberg, Hankel forms and the Fock space, Rev. Mat. Iberoamericana 3 (1987), 61-138. Zbl0704.47022
  7. [7] S. Kobayashi, On the automorphism group of a homogeneous complex manifold, Proc. Amer. Math. Soc. 12 (3) (1961), 359-361. Zbl0101.14302
  8. [8] T. Mazur, Canonical isometry on weighted Bergman spaces, Pacific J. Math. 136 (2) (1989), 303-310. Zbl0677.46015
  9. [9] T. Mazur, On the complex manifolds of Bergman type, preprint. Zbl1064.32500
  10. [10] T. Mazur and M. Skwarczyński, Spectral properties of holomorphic automorphism with fixed point, Glasgow Math. J. 28 (1986), 25-30. Zbl0579.46017
  11. [11] W. Mlak, Introduction to Hilbert Space Theory, PWN, Warszawa 1991. Zbl0745.47001
  12. [12] M. Skwarczyński, Biholomorphic invariants related to the Bergman functions, Dissertationes Math. 173 (1980). Zbl0443.32014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.