Biholomorphic invariants related to the Bergman functions

Maciej Skwarczyński

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1980

Abstract

top
CONTENTSPRELIMINARY REMARKS........................................................................................ 5 Introduction..................................................................................................... 5 Basic definitions, examples and facts............................................................... 8I. LU QI-KENQ DOMAINS........................................................................................... 13 Some properties of Lu Qi-keng domains.................................................. 13 An example of bounded non-Lu Qi-keng domain............................................ 14 Doubly connected Lu Qi-keng domains in the plane...................................... 15II. REPRESENTATIVE COORDINATES................................................................... 16 The Bergman metric tensor......................................................................... 16 A property of representative coordinates........................................................... 19III. AN INVARIANT DISTANCE................................................................................... 20 Biholomorphic mappings and canonical isometry................................. 20 Critical points of the invariant distance.............................................................. 22 Completeness with respect to the invariant distance..................................... 22IV. EXTENSION THEOREM....................................................................................... 27 Semiconformal mappings........................................................................... 27 Extension theorem................................................................................................ 31 Local characterization of a biholomorphic mapping...................................... 33V. DOMAIN DEPENDENCE...................................................................................... 36 Ramadanov theorem.................................................................................... 36 An analogue of Ramadanov theorem for decreasing sequences................ 37 A counterexample in the plane............................................................................ 39VI. THE IDEAL BOUNDARY....................................................................................... 40 Definition of the ideal boundary................................................................... 40 Characteristic properties....................................................................................... 49 The case of bounded circular domains.............................................................. 53 Plane domains and strictly pseudoconvex domains........................................ 54REFERENCES.............................................................................................................. 58

How to cite

top

Maciej Skwarczyński. Biholomorphic invariants related to the Bergman functions. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1980. <http://eudml.org/doc/268383>.

@book{MaciejSkwarczyński1980,
abstract = {CONTENTSPRELIMINARY REMARKS........................................................................................ 5 Introduction..................................................................................................... 5 Basic definitions, examples and facts............................................................... 8I. LU QI-KENQ DOMAINS........................................................................................... 13 Some properties of Lu Qi-keng domains.................................................. 13 An example of bounded non-Lu Qi-keng domain............................................ 14 Doubly connected Lu Qi-keng domains in the plane...................................... 15II. REPRESENTATIVE COORDINATES................................................................... 16 The Bergman metric tensor......................................................................... 16 A property of representative coordinates........................................................... 19III. AN INVARIANT DISTANCE................................................................................... 20 Biholomorphic mappings and canonical isometry................................. 20 Critical points of the invariant distance.............................................................. 22 Completeness with respect to the invariant distance..................................... 22IV. EXTENSION THEOREM....................................................................................... 27 Semiconformal mappings........................................................................... 27 Extension theorem................................................................................................ 31 Local characterization of a biholomorphic mapping...................................... 33V. DOMAIN DEPENDENCE...................................................................................... 36 Ramadanov theorem.................................................................................... 36 An analogue of Ramadanov theorem for decreasing sequences................ 37 A counterexample in the plane............................................................................ 39VI. THE IDEAL BOUNDARY....................................................................................... 40 Definition of the ideal boundary................................................................... 40 Characteristic properties....................................................................................... 49 The case of bounded circular domains.............................................................. 53 Plane domains and strictly pseudoconvex domains........................................ 54REFERENCES.............................................................................................................. 58},
author = {Maciej Skwarczyński},
keywords = {biholomorphic invariants; Bergman function; biholomorphic transformation; semiconformal mapping; Lu Qi-keng domain; invariant distance; Kobayashi conjecture; strictly pseudoconvex domain},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Biholomorphic invariants related to the Bergman functions},
url = {http://eudml.org/doc/268383},
year = {1980},
}

TY - BOOK
AU - Maciej Skwarczyński
TI - Biholomorphic invariants related to the Bergman functions
PY - 1980
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPRELIMINARY REMARKS........................................................................................ 5 Introduction..................................................................................................... 5 Basic definitions, examples and facts............................................................... 8I. LU QI-KENQ DOMAINS........................................................................................... 13 Some properties of Lu Qi-keng domains.................................................. 13 An example of bounded non-Lu Qi-keng domain............................................ 14 Doubly connected Lu Qi-keng domains in the plane...................................... 15II. REPRESENTATIVE COORDINATES................................................................... 16 The Bergman metric tensor......................................................................... 16 A property of representative coordinates........................................................... 19III. AN INVARIANT DISTANCE................................................................................... 20 Biholomorphic mappings and canonical isometry................................. 20 Critical points of the invariant distance.............................................................. 22 Completeness with respect to the invariant distance..................................... 22IV. EXTENSION THEOREM....................................................................................... 27 Semiconformal mappings........................................................................... 27 Extension theorem................................................................................................ 31 Local characterization of a biholomorphic mapping...................................... 33V. DOMAIN DEPENDENCE...................................................................................... 36 Ramadanov theorem.................................................................................... 36 An analogue of Ramadanov theorem for decreasing sequences................ 37 A counterexample in the plane............................................................................ 39VI. THE IDEAL BOUNDARY....................................................................................... 40 Definition of the ideal boundary................................................................... 40 Characteristic properties....................................................................................... 49 The case of bounded circular domains.............................................................. 53 Plane domains and strictly pseudoconvex domains........................................ 54REFERENCES.............................................................................................................. 58
LA - eng
KW - biholomorphic invariants; Bergman function; biholomorphic transformation; semiconformal mapping; Lu Qi-keng domain; invariant distance; Kobayashi conjecture; strictly pseudoconvex domain
UR - http://eudml.org/doc/268383
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.