Periodic-Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation
Annales Polonici Mathematici (1991)
- Volume: 54, Issue: 2, page 111-116
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topJuan J. Nieto. "Periodic-Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation." Annales Polonici Mathematici 54.2 (1991): 111-116. <http://eudml.org/doc/262459>.
@article{JuanJ1991,
abstract = {In this paper we study the periodic-Neumann boundary value problem for a class of nonlinear parabolic equations. We prove a new uniqueness result and study the structure of the set of solutions when there exist more than one solution. The ideas are applied to a Neumann problem for an elliptic equation.},
author = {Juan J. Nieto},
journal = {Annales Polonici Mathematici},
keywords = {periodic Neumann boundary value problem; uniqueness; set of solutions},
language = {eng},
number = {2},
pages = {111-116},
title = {Periodic-Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation},
url = {http://eudml.org/doc/262459},
volume = {54},
year = {1991},
}
TY - JOUR
AU - Juan J. Nieto
TI - Periodic-Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation
JO - Annales Polonici Mathematici
PY - 1991
VL - 54
IS - 2
SP - 111
EP - 116
AB - In this paper we study the periodic-Neumann boundary value problem for a class of nonlinear parabolic equations. We prove a new uniqueness result and study the structure of the set of solutions when there exist more than one solution. The ideas are applied to a Neumann problem for an elliptic equation.
LA - eng
KW - periodic Neumann boundary value problem; uniqueness; set of solutions
UR - http://eudml.org/doc/262459
ER -
References
top- [1] S. Ahmad, A resonance problem in which the nonlinearity may grow linearly, Proc. Amer. Math. Soc. 92 (1984), 381-384. Zbl0562.34011
- [2] H. Amann, Periodic solutions of semilinear parabolic equations, in: Nonlinear Analysis, Academic Press, New York 1978, 1-29.
- [3] D. W. Bange, Periodic solutions of a quasilinear parabolic differential equation, J. Differential Equations 17 (1975), 61-72. Zbl0291.35051
- [4] J. W. Bebernes and M. Martelli, On the structure of the solution set for periodic boundary value problems, Nonlinear Anal. 4 (1980), 821-830. Zbl0453.34019
- [5] J. W. Bebernes and K. Schmitt, Invariant sets and Hukuhara-Kneser property for systems of parabolic partial differential equations, Rocky Mountain J. Math. 7 (1977), 557-567. Zbl0377.35035
- [6] L. Cesari, Functional analysis, nonlinear differential equations and the alternative method, in: Nonlinear Functional Analysis and Differential Equations, Marcel Dekker, New York 1976, 1-197.
- [7] L. Cesari and R. Kannan, An abstract theorem at resonance, Proc. Amer. Math. Soc. 63 (1977), 221-225. Zbl0361.47021
- [8] L. Cesari and R. Kannan, An existence theorem for periodic solutions of nonlinear parabolic equations, Istit. Lombardo Accad. Sci. Lett. Rend. A 116 (1985), 19-26. Zbl0593.35008
- [9] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. Zbl0144.34903
- [10] R. Kannan and V. Lakshmikantham, Existence of periodic solutions of semilinear parabolic equations and the method of upper and lower solutions, J. Math. Anal. Appl. 97 (1983), 291-299. Zbl0542.35044
- [11] P. J. McKenna, Uniqueness of solutions for semilinear equations at resonance, Nonlinear Anal. 2 (1978), 235-237. Zbl0383.35026
- [12] J. Mawhin, Semi-coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci. (5) 73 (1987), 118-130. Zbl0647.49007
- [13] J. J. Nieto, Periodic solutions of nonlinear parabolic equations, J. Differential Equations 60 (1985), 90-102. Zbl0537.35049
- [14] J. J. Nieto, Nonuniqueness of solutions for semilinear elliptic equations at resonance, Boll. Un. Mat. Ital. (6) 5-A (1986), 205-210. Zbl0615.35037
- [15] J. J. Nieto, Decreasing sequences of compact absolute retracts and nonlinear problems, Boll. Un. Mat. Ital. (7) 2-B (1988), 497-507. Zbl0667.47035
- [16] T. I. Seidman, Periodic solutions of a nonlinear parabolic equation, J. Differential Equations 19 (1975), 242-257. Zbl0281.35005
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.