A note on generic chaos
Annales Polonici Mathematici (1994)
- Volume: 59, Issue: 2, page 99-105
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topGongfu Liao. "A note on generic chaos." Annales Polonici Mathematici 59.2 (1994): 99-105. <http://eudml.org/doc/262487>.
@article{GongfuLiao1994,
abstract = {We consider dynamical systems on a separable metric space containing at least two points. It is proved that weak topological mixing implies generic chaos, but the converse is false. As an application, some results of Piórek are simply reproved.},
author = {Gongfu Liao},
journal = {Annales Polonici Mathematici},
keywords = {metric space; dynamical system; topological mixing; generic chaos; topologically mixing dynamical system},
language = {eng},
number = {2},
pages = {99-105},
title = {A note on generic chaos},
url = {http://eudml.org/doc/262487},
volume = {59},
year = {1994},
}
TY - JOUR
AU - Gongfu Liao
TI - A note on generic chaos
JO - Annales Polonici Mathematici
PY - 1994
VL - 59
IS - 2
SP - 99
EP - 105
AB - We consider dynamical systems on a separable metric space containing at least two points. It is proved that weak topological mixing implies generic chaos, but the converse is false. As an application, some results of Piórek are simply reproved.
LA - eng
KW - metric space; dynamical system; topological mixing; generic chaos; topologically mixing dynamical system
UR - http://eudml.org/doc/262487
ER -
References
top- [1] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, 1992.
- [2] W. A. Coppel, Chaos in one dimension, in: Chaos and Order (Canberra, 1990), World Sci., Singapore, 1991, 14-21.
- [3] K. Janková and J. Smítal, A characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), 283-292. Zbl0577.54041
- [4] T.-Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. Zbl0351.92021
- [5] G.-F. Liao, ω-limit sets and chaos for maps of the interval, Northeastern Math. J. 6 (1990), 127-135.
- [6] M. Osikawa and Y. Oono, Chaos in C⁰-endomorphism of interval, Publ. Res. Inst. Math. Sci. 17 (1981), 165-177. Zbl0468.58012
- [7] K. Petersen, Ergodic Theory, Cambridge University Press, 1983.
- [8] J. Piórek, On the generic chaos in dynamical systems, Univ. Iagell. Acta Math. 25 (1985), 293-298. Zbl0587.54061
- [9] J. Piórek, On generic chaos of shifts in function spaces, Ann. Polon. Math. 52 (1990), 139-146. Zbl0719.58005
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.