Defining complete and observable chaos

Víctor Jiménez López

Annales Polonici Mathematici (1996)

  • Volume: 64, Issue: 2, page 139-151
  • ISSN: 0066-2216

Abstract

top
For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which l i m i n f n | f n ( x ) - f n ( y ) | = 0 and l i m s u p n | f n ( x ) - f n ( y ) | > 0 . We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions of “complete” and “observable” chaos.

How to cite

top

Víctor Jiménez López. "Defining complete and observable chaos." Annales Polonici Mathematici 64.2 (1996): 139-151. <http://eudml.org/doc/269968>.

@article{VíctorJiménezLópez1996,
abstract = {For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which $lim inf_\{n→∞\} |f^n(x) - f^n(y)| = 0$ and $lim sup_\{n→∞\} |f^n(x) - f^n(y)| > 0$. We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions of “complete” and “observable” chaos.},
author = {Víctor Jiménez López},
journal = {Annales Polonici Mathematici},
keywords = {chaos in the sense of Li and Yorke; dense chaos; generic chaos; full chaos; scrambled set; topological dynamics; iteration; iterative systems; chaos},
language = {eng},
number = {2},
pages = {139-151},
title = {Defining complete and observable chaos},
url = {http://eudml.org/doc/269968},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Víctor Jiménez López
TI - Defining complete and observable chaos
JO - Annales Polonici Mathematici
PY - 1996
VL - 64
IS - 2
SP - 139
EP - 151
AB - For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which $lim inf_{n→∞} |f^n(x) - f^n(y)| = 0$ and $lim sup_{n→∞} |f^n(x) - f^n(y)| > 0$. We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions of “complete” and “observable” chaos.
LA - eng
KW - chaos in the sense of Li and Yorke; dense chaos; generic chaos; full chaos; scrambled set; topological dynamics; iteration; iterative systems; chaos
UR - http://eudml.org/doc/269968
ER -

References

top
  1. [AJS] L. Alsedà, V. Jiménez López and L'. Snoha, On 1-difactors of Markov graphs and the prevalence of simple solenoids, preprint, 1995. 
  2. [BJ] F. Balibrea and V. Jiménez López, A structure theorem for C² functions verifying the Misiurewicz condition, in: Proceedings of the European Conference on Iteration Theory (ECIT 91), Lisbon, 1991, World Sci., Singapore, 1992, 12-21. 
  3. [BH] A. M. Bruckner and T. Hu, On scrambled sets and chaotic functions, Trans. Amer. Math. Soc. 301 (1987), 289-297. Zbl0639.26004
  4. [BKNS] H. Bruin, G. Keller, T. Nowicki and S. van Strien, Absorbing Cantor sets in dynamical systems: Fibonacci maps, preprint Stony Brook 1994/2. 
  5. [CE] P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Progr. Phys. 1, Birkhäuser, Boston, 1980. Zbl0458.58002
  6. [Ge1] T. Gedeon, There are no chaotic mappings with residual scrambled sets, Bull. Austral. Math. Soc. 36 (1987), 411-416. Zbl0646.26008
  7. [Ge2] T. Gedeon, Generic chaos can be large, Acta Math. Univ. Comenian. 54/55 (1988), 237-241. Zbl0725.26006
  8. [Gu] J. Guckenheimer, Sensitive dependence on initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), 133-160. Zbl0429.58012
  9. [JaS] K. Janková and J. Smítal, A characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), 283-292. Zbl0577.54041
  10. [Ji1] V. Jiménez López, C¹ weakly chaotic functions with zero topological entropy and non-flat critical points, Acta Math. Univ. Comenian. 60 (1991), 195-209. Zbl0748.58019
  11. [Ji2] V. Jiménez López, Large chaos in smooth functions of zero topological entropy, Bull. Austral. Math. Soc. 46 (1992), 271-285. Zbl0758.26004
  12. [Ji3] V. Jiménez López, Paradoxical functions on the interval, Proc. Amer. Math. Soc. 120 (1994), 465-473. Zbl0832.58025
  13. [Ji4] V. Jiménez López, Order and chaos for a class of piecewise linear maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1379-1394. Zbl0886.58029
  14. [JiS] V. Jiménez López and L’. Snoha, There are no piecewise linear maps of type 2 , preprint, 1994. 
  15. [Ka] I. Kan, A chaotic function possessing a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 45-49. Zbl0592.26005
  16. [Ku] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966. 
  17. [LY] T.-Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. Zbl0351.92021
  18. [Li] G.-F. Liao, A note on generic chaos, Ann. Polon. Math. 59 (1994), 99-105. Zbl0810.54032
  19. [MT] M. Martens and C. Tresser, Forcing of periodic orbits and renormalization of piecewise affine maps, preprint Stony Brook 1994/17. 
  20. [Mi] M. Misiurewicz, Chaos almost everywhere, in: Iteration Theory and its Functional Equations, Lecture Notes in Math. 1163, Springer, Berlin, 1985, 125-130. 
  21. [Pi1] J. Piórek, On the generic chaos in dynamical systems, Univ. Iagell. Acta Math. 25 (1985), 293-298. Zbl0587.54061
  22. [Pi2] J. Piórek, On generic chaos of shifts in function spaces, Ann. Polon. Math. 52 (1990), 139-146. Zbl0719.58005
  23. [Pi3] J. Piórek, On weakly mixing and generic chaos, Univ. Iagell. Acta Math. 28 (1991), 245-250. Zbl0746.58059
  24. [Sm1] J. Smítal, A chaotic function with some extremal properties, Proc. Amer. Math. Soc. 87 (1983), 54-56. Zbl0555.26003
  25. [Sm2] J. Smítal, A chaotic function with a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 50-54. Zbl0592.26006
  26. [Sm3] J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-282. Zbl0639.54029
  27. [Sn1] L'. Snoha, Generic chaos, Comment. Math. Univ. Carolin. 31 (1990), 793-810. 
  28. [Sn2] L'. Snoha, Dense chaos, Comment. Math. Univ. Carolin. 33 (1992), 747-752. Zbl0784.58043
  29. [Sn3] L'. Snoha, Two-parameter chaos, Acta Univ. M. Belii 1 (1993), 3-6. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.