Defining complete and observable chaos
Annales Polonici Mathematici (1996)
- Volume: 64, Issue: 2, page 139-151
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topVíctor Jiménez López. "Defining complete and observable chaos." Annales Polonici Mathematici 64.2 (1996): 139-151. <http://eudml.org/doc/269968>.
@article{VíctorJiménezLópez1996,
abstract = {For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which $lim inf_\{n→∞\} |f^n(x) - f^n(y)| = 0$ and $lim sup_\{n→∞\} |f^n(x) - f^n(y)| > 0$. We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions of “complete” and “observable” chaos.},
author = {Víctor Jiménez López},
journal = {Annales Polonici Mathematici},
keywords = {chaos in the sense of Li and Yorke; dense chaos; generic chaos; full chaos; scrambled set; topological dynamics; iteration; iterative systems; chaos},
language = {eng},
number = {2},
pages = {139-151},
title = {Defining complete and observable chaos},
url = {http://eudml.org/doc/269968},
volume = {64},
year = {1996},
}
TY - JOUR
AU - Víctor Jiménez López
TI - Defining complete and observable chaos
JO - Annales Polonici Mathematici
PY - 1996
VL - 64
IS - 2
SP - 139
EP - 151
AB - For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which $lim inf_{n→∞} |f^n(x) - f^n(y)| = 0$ and $lim sup_{n→∞} |f^n(x) - f^n(y)| > 0$. We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions of “complete” and “observable” chaos.
LA - eng
KW - chaos in the sense of Li and Yorke; dense chaos; generic chaos; full chaos; scrambled set; topological dynamics; iteration; iterative systems; chaos
UR - http://eudml.org/doc/269968
ER -
References
top- [AJS] L. Alsedà, V. Jiménez López and L'. Snoha, On 1-difactors of Markov graphs and the prevalence of simple solenoids, preprint, 1995.
- [BJ] F. Balibrea and V. Jiménez López, A structure theorem for C² functions verifying the Misiurewicz condition, in: Proceedings of the European Conference on Iteration Theory (ECIT 91), Lisbon, 1991, World Sci., Singapore, 1992, 12-21.
- [BH] A. M. Bruckner and T. Hu, On scrambled sets and chaotic functions, Trans. Amer. Math. Soc. 301 (1987), 289-297. Zbl0639.26004
- [BKNS] H. Bruin, G. Keller, T. Nowicki and S. van Strien, Absorbing Cantor sets in dynamical systems: Fibonacci maps, preprint Stony Brook 1994/2.
- [CE] P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Progr. Phys. 1, Birkhäuser, Boston, 1980. Zbl0458.58002
- [Ge1] T. Gedeon, There are no chaotic mappings with residual scrambled sets, Bull. Austral. Math. Soc. 36 (1987), 411-416. Zbl0646.26008
- [Ge2] T. Gedeon, Generic chaos can be large, Acta Math. Univ. Comenian. 54/55 (1988), 237-241. Zbl0725.26006
- [Gu] J. Guckenheimer, Sensitive dependence on initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), 133-160. Zbl0429.58012
- [JaS] K. Janková and J. Smítal, A characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), 283-292. Zbl0577.54041
- [Ji1] V. Jiménez López, C¹ weakly chaotic functions with zero topological entropy and non-flat critical points, Acta Math. Univ. Comenian. 60 (1991), 195-209. Zbl0748.58019
- [Ji2] V. Jiménez López, Large chaos in smooth functions of zero topological entropy, Bull. Austral. Math. Soc. 46 (1992), 271-285. Zbl0758.26004
- [Ji3] V. Jiménez López, Paradoxical functions on the interval, Proc. Amer. Math. Soc. 120 (1994), 465-473. Zbl0832.58025
- [Ji4] V. Jiménez López, Order and chaos for a class of piecewise linear maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1379-1394. Zbl0886.58029
- [JiS] V. Jiménez López and L’. Snoha, There are no piecewise linear maps of type , preprint, 1994.
- [Ka] I. Kan, A chaotic function possessing a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 45-49. Zbl0592.26005
- [Ku] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [LY] T.-Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. Zbl0351.92021
- [Li] G.-F. Liao, A note on generic chaos, Ann. Polon. Math. 59 (1994), 99-105. Zbl0810.54032
- [MT] M. Martens and C. Tresser, Forcing of periodic orbits and renormalization of piecewise affine maps, preprint Stony Brook 1994/17.
- [Mi] M. Misiurewicz, Chaos almost everywhere, in: Iteration Theory and its Functional Equations, Lecture Notes in Math. 1163, Springer, Berlin, 1985, 125-130.
- [Pi1] J. Piórek, On the generic chaos in dynamical systems, Univ. Iagell. Acta Math. 25 (1985), 293-298. Zbl0587.54061
- [Pi2] J. Piórek, On generic chaos of shifts in function spaces, Ann. Polon. Math. 52 (1990), 139-146. Zbl0719.58005
- [Pi3] J. Piórek, On weakly mixing and generic chaos, Univ. Iagell. Acta Math. 28 (1991), 245-250. Zbl0746.58059
- [Sm1] J. Smítal, A chaotic function with some extremal properties, Proc. Amer. Math. Soc. 87 (1983), 54-56. Zbl0555.26003
- [Sm2] J. Smítal, A chaotic function with a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 50-54. Zbl0592.26006
- [Sm3] J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-282. Zbl0639.54029
- [Sn1] L'. Snoha, Generic chaos, Comment. Math. Univ. Carolin. 31 (1990), 793-810.
- [Sn2] L'. Snoha, Dense chaos, Comment. Math. Univ. Carolin. 33 (1992), 747-752. Zbl0784.58043
- [Sn3] L'. Snoha, Two-parameter chaos, Acta Univ. M. Belii 1 (1993), 3-6.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.