Asymptotic behaviour of a transport equation
Annales Polonici Mathematici (1992)
- Volume: 57, Issue: 1, page 45-55
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topRyszard Rudnicki. "Asymptotic behaviour of a transport equation." Annales Polonici Mathematici 57.1 (1992): 45-55. <http://eudml.org/doc/262498>.
@article{RyszardRudnicki1992,
abstract = {We study the asymptotic behaviour of the semigroup of Markov operators generated by the equation $u_t + bu_x + cu = a∫_0^\{ax\} u(t,ax-y)μ(dy)$. We prove that for a > 1 this semigroup is asymptotically stable. We show that for a ≤ 1 this semigroup, properly normalized, converges to a limit which depends only on a.},
author = {Ryszard Rudnicki},
journal = {Annales Polonici Mathematici},
keywords = {Markov operators; asymptotic behaviour; integrodifferential transport equation; stochastic processes},
language = {eng},
number = {1},
pages = {45-55},
title = {Asymptotic behaviour of a transport equation},
url = {http://eudml.org/doc/262498},
volume = {57},
year = {1992},
}
TY - JOUR
AU - Ryszard Rudnicki
TI - Asymptotic behaviour of a transport equation
JO - Annales Polonici Mathematici
PY - 1992
VL - 57
IS - 1
SP - 45
EP - 55
AB - We study the asymptotic behaviour of the semigroup of Markov operators generated by the equation $u_t + bu_x + cu = a∫_0^{ax} u(t,ax-y)μ(dy)$. We prove that for a > 1 this semigroup is asymptotically stable. We show that for a ≤ 1 this semigroup, properly normalized, converges to a limit which depends only on a.
LA - eng
KW - Markov operators; asymptotic behaviour; integrodifferential transport equation; stochastic processes
UR - http://eudml.org/doc/262498
ER -
References
top- [1] T. Dłotko and A. Lasota, Statistical stability and the lower bound function technique, in: Semigroups. Theory and Applications, Vol. I, H. Brezis, M. Crandall and F. Kappel (eds.), Longman Scientific & Technical, 1987, 75-95.
- [2] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience Publ., New York 1968. Zbl0128.34803
- [3] J. Klaczak, Stability of a transport equation, Ann. Polon. Math. 49 (1988), 69-80. Zbl0673.45009
- [4] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384. Zbl0524.28021
- [5] K. Łoskot, Stochastic perturbations of dynamical systems, Ann. Polon. Math., to appear. Zbl0876.60050
- [6] A. Rényi, Probability Theory, Akadémiai Kiadó, Budapest 1970.
- [7] A. N. Shiryaev, Probability, Nauka, Moscow 1989 (in Russian).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.