Markov operators: applications to diffusion processes and population dynamics

Ryszard Rudnicki

Applicationes Mathematicae (2000)

  • Volume: 27, Issue: 1, page 67-79
  • ISSN: 1233-7234

Abstract

top
This note contains a survey of recent results concerning asymptotic properties of Markov operators and semigroups. Some biological and physical applications are given.

How to cite

top

Rudnicki, Ryszard. "Markov operators: applications to diffusion processes and population dynamics." Applicationes Mathematicae 27.1 (2000): 67-79. <http://eudml.org/doc/219260>.

@article{Rudnicki2000,
abstract = {This note contains a survey of recent results concerning asymptotic properties of Markov operators and semigroups. Some biological and physical applications are given.},
author = {Rudnicki, Ryszard},
journal = {Applicationes Mathematicae},
keywords = {Markov operator; asymptotic stability; diffusion process; partial differential equation; asymptotic properties; Markov operators and semigroups; sweeping; Foguel alternative; Khasminskij function; differential equations; diffusion and jump processes},
language = {eng},
number = {1},
pages = {67-79},
title = {Markov operators: applications to diffusion processes and population dynamics},
url = {http://eudml.org/doc/219260},
volume = {27},
year = {2000},
}

TY - JOUR
AU - Rudnicki, Ryszard
TI - Markov operators: applications to diffusion processes and population dynamics
JO - Applicationes Mathematicae
PY - 2000
VL - 27
IS - 1
SP - 67
EP - 79
AB - This note contains a survey of recent results concerning asymptotic properties of Markov operators and semigroups. Some biological and physical applications are given.
LA - eng
KW - Markov operator; asymptotic stability; diffusion process; partial differential equation; asymptotic properties; Markov operators and semigroups; sweeping; Foguel alternative; Khasminskij function; differential equations; diffusion and jump processes
UR - http://eudml.org/doc/219260
ER -

References

top
  1. [1] V. Balakrishnan, C. Van den Broeck and P. Hanggi, First-passage times of non-Markovian processes: the case of a reflecting boundary, Phys. Rev. A 38 (1988), 4213-4222. 
  2. [2] K. Baron and A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math. 58 (1993), 161-175. Zbl0839.47021
  3. [3] W. Bartoszek and T. Brown, On Frobenius-Perron operators which overlap supports, Bull. Polish Acad. Sci. Math. 45 (1997), 17-24. Zbl0891.47006
  4. [4] V. Bezak, A modification of the Wiener process due to a Poisson random train of diffusion-enhancing pulses, J. Phys. A 25 (1992), 6027-6041. Zbl0770.60094
  5. [5] S. Chandrasekhar and G. Münch, The theory of fluctuations in brightness of the Milky-Way, Astrophys. J. 125, 94-123. 
  6. [6] O. Diekmann, H. J. A. Heijmans and H. R. Thieme, On the stability of the cell size distribution, J. Math. Biol. 19 (1984), 227-248. Zbl0543.92021
  7. [7] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold, New York, 1969. 
  8. [8] R. Z. Hasminskiĭ, Ergodic properties of recurrent diffusion processes and stabilization of the solutions of the Cauchy problem for parabolic equations, Teor. Veroyatnost. Primen. 5 (1960), 196-214 (in Russian). 
  9. [9] T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228. Zbl0767.47012
  10. [10] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer, New York, 1994. 
  11. [11] A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62. Zbl0529.92011
  12. [12] J. Łuczka and R. Rudnicki, Randomly flashing diffusion: asymptotic properties, J. Statist. Phys. 83 (1996), 1149-1164. Zbl1081.82602
  13. [13] M. C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol. 33 (1994), 89-109. Zbl0833.92014
  14. [14] J. Malczak, An application of Markov operators in differential and integral equations, Rend. Sem. Mat. Univ. Padova 87 (1992), 281-297. Zbl0795.60071
  15. [15] J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomath. 68, Springer, New York, 1986. Zbl0614.92014
  16. [16] K. Pichór, Asymptotic stability of a partial differential equation with an integral perturbation, Ann. Polon. Math. 68 (1998), 83-96, Zbl0911.45005
  17. [17] K. Pichór and R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl. 215 (1997), 56-74. Zbl0892.35072
  18. [18] K. Pichór and R. Rudnicki, Asymptotic behaviour of Markov semigroups and applications to transport equations, Bull. Polish Acad. Sci. Math. 45 (1997), 379-397. Zbl0909.47032
  19. [19] R. Rudnicki, Asymptotic behaviour of a transport equation, Ann. Polon. Math. 57 (1992), 45-55. Zbl0758.45009
  20. [20] R. Rudnicki, Asymptotic behaviour of an integro-parabolic equation, Bull. Polish Acad. Sci. Math. 40 (1992), 111-128. Zbl0767.45007
  21. [21] R. Rudnicki, Asymptotic properties of the Fokker-Planck equation, in: Chaos--The Interplay between Stochastics and Deterministic Behaviour, Karpacz '95 Proc., P. Garbaczewski, M. Wolf and A. Weron (eds.), Lecture Notes in Phys. 457, Springer, Berlin, 1995, 517-521. Zbl0839.35013
  22. [22] R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math. 43 (1995), 245-262. Zbl0838.47040
  23. [23] R. Rudnicki, Asymptotic stability of Markov operators: a counter-example, ibid. 45 (1997), 1-5. Zbl0891.47007
  24. [24] R. Rudnicki and K. Pichór, Markov semigroups and stability of the cell maturity distribution, J. Biol. Systems, submitted. Zbl0965.47026
  25. [25] J. Traple, Markov semigroups generated by Poisson driven differential equations, Bull. Polish Acad. Sci. Math. 44 (1996), 230-252. Zbl0861.45008
  26. [26] J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465-475. Zbl0716.92017
  27. [27] J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, ibid. 23 (1986), 231-246. Zbl0582.92020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.