Univalent harmonic mappings
Annales Polonici Mathematici (1992)
- Volume: 57, Issue: 1, page 57-70
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topAlbert E. Livingston. "Univalent harmonic mappings." Annales Polonici Mathematici 57.1 (1992): 57-70. <http://eudml.org/doc/262518>.
@article{AlbertE1992,
abstract = {Let a < 0, Ω = ℂ -(-∞, a] and U = z: |z| < 1. We consider the class $S_H(U,Ω)$ of functions f which are univalent, harmonic and sense preserving with f(U) = Ω and satisfy f(0) = 0, $f_z(0) > 0$ and $f_\{z̅\}(0) = 0$. We describe the closure $\overline\{S_H(U,Ω)\}$ of $S_H(U,Ω)$ and determine the extreme points of $\overline\{S_H(U,Ω)\}$.},
author = {Albert E. Livingston},
journal = {Annales Polonici Mathematici},
keywords = {orientation preserving; extreme points},
language = {eng},
number = {1},
pages = {57-70},
title = {Univalent harmonic mappings},
url = {http://eudml.org/doc/262518},
volume = {57},
year = {1992},
}
TY - JOUR
AU - Albert E. Livingston
TI - Univalent harmonic mappings
JO - Annales Polonici Mathematici
PY - 1992
VL - 57
IS - 1
SP - 57
EP - 70
AB - Let a < 0, Ω = ℂ -(-∞, a] and U = z: |z| < 1. We consider the class $S_H(U,Ω)$ of functions f which are univalent, harmonic and sense preserving with f(U) = Ω and satisfy f(0) = 0, $f_z(0) > 0$ and $f_{z̅}(0) = 0$. We describe the closure $\overline{S_H(U,Ω)}$ of $S_H(U,Ω)$ and determine the extreme points of $\overline{S_H(U,Ω)}$.
LA - eng
KW - orientation preserving; extreme points
UR - http://eudml.org/doc/262518
ER -
References
top- [1] Y. Abu-Muhanna and G. Schober, Harmonic mappings onto convex domains, Canad. J. Math. 39 (1987), 1489-1530. Zbl0644.30003
- [2] J. A. Cima and A. E. Livingston, Integral smoothness properties of some harmonic mappings, Complex Variables 11 (1989), 95-110. Zbl0724.30011
- [3] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. AI 9 (1984), 3-25. Zbl0506.30007
- [4] D. J. Hallenbeck and T. H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function Theory, Monographs and Studies in Math. 22, Pitman, 1984. Zbl0581.30001
- [5] W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
- [6] W. Hengartner and G. Schober, Curvature estimates for some minimal surfaces, in: Complex Analysis, Birkhäuser, 1988, 87-100. Zbl0664.30012
- [7] W. Szapiel, Extremal problems for convex sets. Applications to holomorphic functions, Dissertation XXXVII, UMCS Press, Lublin 1986 (in Polish). Zbl0602.30028
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.