The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Univalent harmonic mappings II

Albert E. Livingston — 1997

Annales Polonici Mathematici

Let a < 0 < b and Ω(a,b) = ℂ - ((-∞, a] ∪ [b,+∞)) and U= z: |z| < 1. We consider the class S H ( U , Ω ( a , b ) ) of functions f which are univalent, harmonic and sense-preserving with f(U) = Ω and satisfying f(0) = 0, f z ( 0 ) > 0 and f z ̅ ( 0 ) = 0 .

Convex meromorphic mappings

Albert E. Livingston — 1994

Annales Polonici Mathematici

We study functions f(z) which are meromorphic and univalent in the unit disk with a simple pole at z = p, 0 < p < 1, and which map the unit disk onto a domain whose complement is either convex or is starlike with respect to a point w₀ ≠ 0.

Univalent harmonic mappings

Albert E. Livingston — 1992

Annales Polonici Mathematici

Let a < 0, Ω = ℂ -(-∞, a] and U = z: |z| < 1. We consider the class S H ( U , Ω ) of functions f which are univalent, harmonic and sense preserving with f(U) = Ω and satisfy f(0) = 0, f z ( 0 ) > 0 and f z ̅ ( 0 ) = 0 . We describe the closure S H ( U , Ω ) ¯ of S H ( U , Ω ) and determine the extreme points of S H ( U , Ω ) ¯ .

Page 1

Download Results (CSV)