The Bergman kernel functions of certain unbounded domains
Annales Polonici Mathematici (1998)
- Volume: 70, Issue: 1, page 109-115
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topFriedrich Haslinger. "The Bergman kernel functions of certain unbounded domains." Annales Polonici Mathematici 70.1 (1998): 109-115. <http://eudml.org/doc/262543>.
@article{FriedrichHaslinger1998,
abstract = {We compute the Bergman kernel functions of the unbounded domains $Ω_p = \{(z^\{\prime \},z) ∈ ℂ² : z > p(z^\{\prime \})\}$, where $p(z^\{\prime \}) = |z^\{\prime \}|^\{α\}/α$. It is also shown that these kernel functions have no zeros in $Ω_p$. We use a method from harmonic analysis to reduce the computation of the 2-dimensional case to the problem of finding the kernel function of a weighted space of entire functions in one complex variable.},
author = {Friedrich Haslinger},
journal = {Annales Polonici Mathematici},
keywords = {Bergman kernel; Szegő kernel; Bergman and Szegő kernel functions; entire functions; weakly pseudoconvex domains; integral representations in },
language = {eng},
number = {1},
pages = {109-115},
title = {The Bergman kernel functions of certain unbounded domains},
url = {http://eudml.org/doc/262543},
volume = {70},
year = {1998},
}
TY - JOUR
AU - Friedrich Haslinger
TI - The Bergman kernel functions of certain unbounded domains
JO - Annales Polonici Mathematici
PY - 1998
VL - 70
IS - 1
SP - 109
EP - 115
AB - We compute the Bergman kernel functions of the unbounded domains $Ω_p = {(z^{\prime },z) ∈ ℂ² : z > p(z^{\prime })}$, where $p(z^{\prime }) = |z^{\prime }|^{α}/α$. It is also shown that these kernel functions have no zeros in $Ω_p$. We use a method from harmonic analysis to reduce the computation of the 2-dimensional case to the problem of finding the kernel function of a weighted space of entire functions in one complex variable.
LA - eng
KW - Bergman kernel; Szegő kernel; Bergman and Szegő kernel functions; entire functions; weakly pseudoconvex domains; integral representations in
UR - http://eudml.org/doc/262543
ER -
References
top- [BFS] H. P. Boas, S. Fu and E. J. Straube, The Bergman kernel function: Explicit formulas and zeros, Proc. Amer. Math. Soc. (to appear). Zbl0919.32013
- [BL] A. Bonami and N. Lohoué, Projecteurs de Bergman et Szegő pour une classe de domaines faiblement pseudo-convexes et estimations , Compositio Math. 46 (1982), 159-226. Zbl0538.32005
- [BSY] H. P. Boas, E. J. Straube and J. Yu, Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), 449-462.
- [D'A] J. P. D'Angelo, An explicit computation of the Bergman kernel function, J. Geom. Anal. 4 (1994), 23-34.
- [D] K. P. Diaz, The Szegő kernel as a singular integral kernel on a family of weakly pseudoconvex domains, Trans. Amer. Math. Soc. 304 (1987), 147-170. Zbl0659.42009
- [DO] K. Diederich and T. Ohsawa, On the parameter dependence of solutions to the ∂̅-equation, Math. Ann. 289 (1991), 581-588. Zbl0789.35119
- [FH1] G. Francsics and N. Hanges, Explicit formulas for the Szegő kernel on certain weakly pseudoconvex domains, Proc. Amer. Math. Soc. 123 (1995), 3161-3168. Zbl0848.32018
- [FH2] G. Francsics and N. Hanges, The Bergman kernel of complex ovals and multivariable hypergeometric functions, J. Funct. Anal. 142 (1996), 494-510. Zbl0871.32016
- [FH3] G. Francsics and N. Hanges, Asymptotic behavior of the Bergman kernel and hypergeometric functions, in: Contemp. Math. (to appear). Zbl0889.32025
- [GS] P. C. Greiner and E. M. Stein, On the solvability of some differential operators of type , Proc. Internat. Conf., (Cortona, 1976-1977), Scuola Norm. Sup. Pisa, 1978, 106-165.
- [Han] N. Hanges, Explicit formulas for the Szegő kernel for some domains in , J. Funct. Anal. 88 (1990), 153-165. Zbl0701.32012
- [Has1] F. Haslinger, Szegő kernels of certain unbounded domains in , Rév. Rou- maine Math. Pures Appl. 39 (1994), 914-926.
- [Has2] F. Haslinger, Singularities of the Szegő kernel for certain weakly pseudoconvex domains in , J. Funct. Anal. 129 (1995), 406-427. Zbl0853.32023
- [Has3] F. Haslinger, Bergman and Hardy spaces on model domains, Illinois J. Math. (to appear).
- [He] P. Henrici, Applied and Computational Complex Analysis, II, Wiley, New York, 1977.
- [K] H. Kang, -equations on certain unbounded weakly pseudoconvex domains, Trans. Amer. Math. Soc. 315 (1989), 389-413.
- [Kr] S. G. Krantz, Function Theory of Several Complex Variables, Wadsworth & Brooks/Cole, Pacific Grove, Calif., 1992.
- [McN1] J. McNeal, Boundary behavior of the Bergman kernel function in , Duke Math. J. 58 (1989), 499-512.
- [McN2] J. McNeal, Local geometry of decoupled pseudoconvex domains, in: Complex Analysis, Aspects of Math. E17, K. Diederich (ed.), Vieweg 1991, 223-230. Zbl0747.32019
- [McN3] J. McNeal, Estimates on the Bergman kernels on convex domains, Adv. Math. 109 (1994), 108-139. Zbl0816.32018
- [N] A. Nagel, Vector fields and nonisotropic metrics, in: Beijing Lectures in Harmonic Analysis, E. M. Stein (ed.), Princeton Univ. Press, Princeton, N.J., 1986, 241-306.
- [NRSW1] A. Nagel, J. P. Rosay, E. M. Stein and S. Wainger, Estimates for the Bergman and Szegő kernels in certain weakly pseudoconvex domains, Bull. Amer. Math. Soc. 18 (1988), 55-59. Zbl0642.32014
- [NRSW2] A. Nagel, J. P. Rosay, E. M. Stein and S. Wainger, Estimates for the Bergman and Szegő kernels in , Ann. of Math. 129 (1989), 113-149. Zbl0667.32016
- [OPY] K. Oeljeklaus, P. Pflug and E. H. Youssfi, The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928. Zbl0873.32025
- [R] M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, 1986. Zbl0591.32002
- [S] E. M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993. Zbl0821.42001
- [T] B. A. Taylor, On weighted polynomial approximation of entire functions, Pacific J. Math. 36 (1971), 523-539. Zbl0211.14904
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.