Phénomène de Hartogs-Bochner dans les variétés CR

Christine Laurent-Thiebaut

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 233-247
  • ISSN: 0137-6934

How to cite


Laurent-Thiebaut, Christine. "Phénomène de Hartogs-Bochner dans les variétés CR." Banach Center Publications 31.1 (1995): 233-247. <>.

author = {Laurent-Thiebaut, Christine},
journal = {Banach Center Publications},
keywords = {Hartogs-Bochner property; CR-manifolds},
language = {fre},
number = {1},
pages = {233-247},
title = {Phénomène de Hartogs-Bochner dans les variétés CR},
url = {},
volume = {31},
year = {1995},

AU - Laurent-Thiebaut, Christine
TI - Phénomène de Hartogs-Bochner dans les variétés CR
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 233
EP - 247
LA - fre
KW - Hartogs-Bochner property; CR-manifolds
UR -
ER -


  1. [Ai/He] R. A. Airapetjan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Russian Math. Surveys 39 (1984), 41-118. 
  2. [An/G] A. Andreotti et H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. Zbl0106.05501
  3. [An/Hi] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. Part I: Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa 26 (1972), 325-363. Zbl0256.32007
  4. [Ba] M. Y. Barkatou, Estimation höldérienne d'un noyau local de type Martinelli-Bochner sur les hypersurfaces 1-convexes-concaves, Applications, Math. Z., à paraître. 
  5. [Bo] S. Bochner, Analytic and meromorphic continuation by means of Green's formula, Ann. of Math. 44 (1943), 652-673. Zbl0060.24206
  6. [Či] E. M. Čirka, Analytic representation of CR functions, Math. USSR-Sb. 27 (1975), 526-553. Zbl0371.32004
  7. [Eh] L. Ehrenpreis, A new proof and an extension of Hartogs theorem, Bull. Amer. Math. Soc. 67 (1961), 507-509. Zbl0099.07801
  8. [Fi/Le] B. Fischer and J. Leiterer, A local Martinelli-Bochner formula on hypersurfaces, Math. Z. 214 (1993), 659-681. Zbl0791.32006
  9. [Fi/Li] W. Fischer und I. Lieb, Lokale Kerne und beschränkte Lösungen für den ∂̅-Operator auf q-konvexen Gebieten, Math. Ann. 208 (1974), 249-265. Zbl0277.35045
  10. [Ha/La] R. Harvey and H. B. Lawson, Boundaries of complex analytic varieties I, Ann. of Math. 102 (1975), 233-290. 
  11. [He 1] G. M. Henkin, Solution des équations de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann q-convexes, C. R. Acad. Sci. Paris Sér. I Math.292 (1981), 27-30. Zbl0472.32014
  12. [He 2] G. M. Henkin, The Hartogs-Bochner effect on CR manifolds, Soviet Math. Dokl. 29 (1984), 78-82. Zbl0601.32021
  13. [He 3] G. M. Henkin, The method of integral representations in complex analysis, in: Sovremennye problemy matematiki, Fundamental'nye napravleniya 7, Moscow, VINITI, 1985, 23-124 (in Russian); English transl.: Encyclopedia of Math. Sci. 7, Several Complex Variables I, Springer, 1990, 19-116. 
  14. [He/Le] G. M. Henkin and J. Leiterer, Andreotti-Grauert Theory by Integral Formulas, Birkhäuser, 1988. Zbl0654.32001
  15. [Ky] A. M. Kytmanov, Holomorphic extension of CR-functions with singularities on a hypersurface, Math. USSR-Izv. 37 (1991), 681-691. Zbl0738.32006
  16. [L-T] C. Laurent-Thiebaut, Sur l'extension des fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. 150 (1988), 141-152. Zbl0646.32010
  17. [L-T 1] C. Laurent-Thiebaut, Résolution du ̅ b à support compact et phénomène de Hartogs-Bochner dans les variétés CR, in: Proc. Sympos. Pure Math. 52 (1991), 239-249. 
  18. [L-T 2] C. Laurent-Thiebaut, Phénomène de Hartogs-Bochner relatif dans une hypersurface réelle 2-concave d'une variété analytique complexe, Math. Z. 212 (1993), 511-525. 
  19. [L-T/L] C. Laurent-Thiebaut and J. Leiterer, On the Hartogs-Bochner extension phenomenon for differential forms, Math. Ann. 284 (1989), 103-119. Zbl0675.32015
  20. [Lu] G. Lupacciolu, A theorem on holomorphic extension of CR functions, Pacific J. Math. 124 (1986), 177-191. Zbl0597.32014
  21. [Lu 1] G. Lupacciolu, Some global results on extension of CR objects in complex manifolds, Trans. Amer. Math. Soc. 321 (1990), 761-774. Zbl0713.32006
  22. [Lu 2] G. Lupacciolu, Characterization of removable sets in strongly pseudo-convex boundaries, à paraître. Zbl0823.32004
  23. [Lu/To] G. Lupacciolu et G. Tomassini, Un teorema di estensione per le CR-funzioni, Ann. Mat. Pura Appl. 137 (1984), 257-263. 
  24. [Ma 1] E. Martinelli, Sopra una dimonstrazione di R. Fueter per un teorema di Hartogs, Comment. Math. Helv. 15 (1943), 340-349. 
  25. [Ma 2] E. Martinelli, Sulla determinazione di una funzione analitica più variabili complesse in un campo, assegnatone la traccia sulla frontiera, Ann. Mat. Pura Appl. 55 (1961), 192-202. Zbl0104.30203
  26. [N] I. Naruki, Localization principle for differential complexes and its applications, Publ. Res. Inst. Math. Sci. Kyoto Univ. 8 (1972), 43-110. Zbl0246.35072
  27. [St] E. L. Stout, Removable singularities for the boundary values of holomorphic functions, in: Math. Notes 38, Princeton University Press, 1993, 600-629. Zbl0772.32011

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.