E. E. Levi convexity and the Hans Lewy problem. Part I : reduction to vanishing theorems

Aldo Andreotti; C. Denson Hill

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1972)

  • Volume: 26, Issue: 2, page 325-363
  • ISSN: 0391-173X

How to cite

top

Andreotti, Aldo, and Denson Hill, C.. "E. E. Levi convexity and the Hans Lewy problem. Part I : reduction to vanishing theorems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1972): 325-363. <http://eudml.org/doc/83597>.

@article{Andreotti1972,
author = {Andreotti, Aldo, Denson Hill, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {325-363},
publisher = {Scuola normale superiore},
title = {E. E. Levi convexity and the Hans Lewy problem. Part I : reduction to vanishing theorems},
url = {http://eudml.org/doc/83597},
volume = {26},
year = {1972},
}

TY - JOUR
AU - Andreotti, Aldo
AU - Denson Hill, C.
TI - E. E. Levi convexity and the Hans Lewy problem. Part I : reduction to vanishing theorems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1972
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 325
EP - 363
LA - eng
UR - http://eudml.org/doc/83597
ER -

References

top
  1. [1] A. Andreotti, E. E. Levi convexity and H. Lewy Problem. Proceedings of the International Congress of Mathematicians. Nice (1970), t. 2, 607-611. Zbl0222.32009MR425180
  2. [2] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie, des espaces complexes. Bull. Soc. Math. France, 90 (1962), 193-259. Zbl0106.05501MR150342
  3. [3] A. Andreotti and C.D. Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, to appear in Ann. Sc. Norm. Sup. Pisa. Zbl0256.32006
  4. [4] A. Andreotti and C.D. Hill, E. E. Levi convexity and the Hans Lewy probleara, Part II: Vanishing theorems. to appear in Ann. Sc. Norm. Sup. Pisa. Zbl0283.32013
  5. [5] S. Bochner, Analytic and meromorphic continuation by means of Green'a formula. Ann. Math., 44 (1943), 652-673. Zbl0060.24206MR9206
  6. [6] G Fichera, Caratterizzazione della traccia, sulla frontiera di un campo, di una funzione analitica di più variabili complesse. Atti Accad. Naz. Lincei Rend., 22 (1957), 706-215. Zbl0106.05202MR93597
  7. [7] F.D. Gakhov, Boundary Value Problems. Oxford, Pergamon Press, 1966. Zbl0141.08001MR198152
  8. [8] E. Kähler, Einführung in die Theorie der Systeme von Differentialgleichungen, New YorkChelsea, 1949. 
  9. [9] J.J. Kohn, Boundaries of complex manifolds. Proceedings of the Conference on Complex Analysis, New York, Springer, (1965), 81-94. Zbl0166.36003MR175149
  10. [10] J. Kohn and H Rossi, On the extension of holomorphic funotions from the boundary of a complex manifold. Ann. Math., 81 (1965), 451-472. Zbl0166.33802MR177135
  11. [11] E.E. Levi, Studî sui punti singulari esssenziali delle funzioni analitiche di due o più variabili complesse. Annali di Mat. Pura ed Appl., 16 (1910), 61-87. Zbl41.0487.01JFM41.0487.01
  12. [12] H. Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables. Ann. Math., 64 (1956), 514-522. Zbl0074.06204MR81952
  13. [13] H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1957), 155-158. Zbl0078.08104MR88629
  14. [14] H. Lewy, On hulls of holomorphy, Comm. Pure Appl. Math., 13 (1960), 587-591. Zbl0113.06102MR150339
  15. [15] E. Martinelli, Alcuni teoremi integrali per le funzioni anatitiche di più variabili complesse. Rend. Acad. Italia, 9 (1939), 269-300. Zbl0022.24002JFM64.0322.04
  16. [16] E. Martinelli, Sopra un teorema di F. Severi nella teoria delle funzioni di più variabili complesse. Rend. Mat. ed Appl., (1961), 81-96. Zbl0104.30301MR146408
  17. [17] J.P. Serre, Un theoreme de dualité, Comment. Math. Helv., 29 (1955), 9-26. Zbl0067.16101MR67489
  18. [18] F. TrevesOn local solvability of linear partial differential equations. Bull. A. M. S., 76 (1970), 552-571. Zbl0236.35038MR257550

Citations in EuDML Documents

top
  1. M. Derridj, Inégalités de Carleman et extension locale des fonctions holomorphes
  2. C. Denson Hill, Barry Mackichan, Hyperfunction cohomology classes and their boundary values
  3. André Boivin, Roman Dwilewicz, Holomorphic approximation of CR functions on tubular submanifolds of ℂ²
  4. Jean-Pierre Rosay, Some applications of Cauchy-Fantappie forms to (local) problems on ¯ b
  5. C. Denson Hill, Aldo Andreotti
  6. Olle Stormark, A note on a paper by Andreotti and Hill concerning the Hans Lewy problem
  7. Christine Laurent-Thiebaut, Phénomène de Hartogs-Bochner dans les variétés CR
  8. Christine Laurent-Thiébaut, Jurgen Leiterer, Uniform estimates for the Cauchy-Riemann equation on q -convex wedges

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.