E. E. Levi convexity and the Hans Lewy problem. Part I : reduction to vanishing theorems
Aldo Andreotti; C. Denson Hill
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1972)
- Volume: 26, Issue: 2, page 325-363
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAndreotti, Aldo, and Denson Hill, C.. "E. E. Levi convexity and the Hans Lewy problem. Part I : reduction to vanishing theorems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1972): 325-363. <http://eudml.org/doc/83597>.
@article{Andreotti1972,
author = {Andreotti, Aldo, Denson Hill, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {325-363},
publisher = {Scuola normale superiore},
title = {E. E. Levi convexity and the Hans Lewy problem. Part I : reduction to vanishing theorems},
url = {http://eudml.org/doc/83597},
volume = {26},
year = {1972},
}
TY - JOUR
AU - Andreotti, Aldo
AU - Denson Hill, C.
TI - E. E. Levi convexity and the Hans Lewy problem. Part I : reduction to vanishing theorems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1972
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 325
EP - 363
LA - eng
UR - http://eudml.org/doc/83597
ER -
References
top- [1] A. Andreotti, E. E. Levi convexity and H. Lewy Problem. Proceedings of the International Congress of Mathematicians. Nice (1970), t. 2, 607-611. Zbl0222.32009MR425180
- [2] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie, des espaces complexes. Bull. Soc. Math. France, 90 (1962), 193-259. Zbl0106.05501MR150342
- [3] A. Andreotti and C.D. Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, to appear in Ann. Sc. Norm. Sup. Pisa. Zbl0256.32006
- [4] A. Andreotti and C.D. Hill, E. E. Levi convexity and the Hans Lewy probleara, Part II: Vanishing theorems. to appear in Ann. Sc. Norm. Sup. Pisa. Zbl0283.32013
- [5] S. Bochner, Analytic and meromorphic continuation by means of Green'a formula. Ann. Math., 44 (1943), 652-673. Zbl0060.24206MR9206
- [6] G Fichera, Caratterizzazione della traccia, sulla frontiera di un campo, di una funzione analitica di più variabili complesse. Atti Accad. Naz. Lincei Rend., 22 (1957), 706-215. Zbl0106.05202MR93597
- [7] F.D. Gakhov, Boundary Value Problems. Oxford, Pergamon Press, 1966. Zbl0141.08001MR198152
- [8] E. Kähler, Einführung in die Theorie der Systeme von Differentialgleichungen, New YorkChelsea, 1949.
- [9] J.J. Kohn, Boundaries of complex manifolds. Proceedings of the Conference on Complex Analysis, New York, Springer, (1965), 81-94. Zbl0166.36003MR175149
- [10] J. Kohn and H Rossi, On the extension of holomorphic funotions from the boundary of a complex manifold. Ann. Math., 81 (1965), 451-472. Zbl0166.33802MR177135
- [11] E.E. Levi, Studî sui punti singulari esssenziali delle funzioni analitiche di due o più variabili complesse. Annali di Mat. Pura ed Appl., 16 (1910), 61-87. Zbl41.0487.01JFM41.0487.01
- [12] H. Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables. Ann. Math., 64 (1956), 514-522. Zbl0074.06204MR81952
- [13] H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1957), 155-158. Zbl0078.08104MR88629
- [14] H. Lewy, On hulls of holomorphy, Comm. Pure Appl. Math., 13 (1960), 587-591. Zbl0113.06102MR150339
- [15] E. Martinelli, Alcuni teoremi integrali per le funzioni anatitiche di più variabili complesse. Rend. Acad. Italia, 9 (1939), 269-300. Zbl0022.24002JFM64.0322.04
- [16] E. Martinelli, Sopra un teorema di F. Severi nella teoria delle funzioni di più variabili complesse. Rend. Mat. ed Appl., (1961), 81-96. Zbl0104.30301MR146408
- [17] J.P. Serre, Un theoreme de dualité, Comment. Math. Helv., 29 (1955), 9-26. Zbl0067.16101MR67489
- [18] F. TrevesOn local solvability of linear partial differential equations. Bull. A. M. S., 76 (1970), 552-571. Zbl0236.35038MR257550
Citations in EuDML Documents
top- M. Derridj, Inégalités de Carleman et extension locale des fonctions holomorphes
- C. Denson Hill, Barry Mackichan, Hyperfunction cohomology classes and their boundary values
- André Boivin, Roman Dwilewicz, Holomorphic approximation of CR functions on tubular submanifolds of ℂ²
- Jean-Pierre Rosay, Some applications of Cauchy-Fantappie forms to (local) problems on
- C. Denson Hill, Aldo Andreotti
- Olle Stormark, A note on a paper by Andreotti and Hill concerning the Hans Lewy problem
- Christine Laurent-Thiebaut, Phénomène de Hartogs-Bochner dans les variétés CR
- Christine Laurent-Thiébaut, Jurgen Leiterer, Uniform estimates for the Cauchy-Riemann equation on -convex wedges
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.