Real analytic maximum modulus manifolds in strictly pseudoconvex boundaries

Andrei Iordan

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 197-206
  • ISSN: 0137-6934

How to cite

top

Iordan, Andrei. "Real analytic maximum modulus manifolds in strictly pseudoconvex boundaries." Banach Center Publications 31.1 (1995): 197-206. <http://eudml.org/doc/262573>.

@article{Iordan1995,
author = {Iordan, Andrei},
journal = {Banach Center Publications},
keywords = {maximum modulus manifold; Levi form},
language = {eng},
number = {1},
pages = {197-206},
title = {Real analytic maximum modulus manifolds in strictly pseudoconvex boundaries},
url = {http://eudml.org/doc/262573},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Iordan, Andrei
TI - Real analytic maximum modulus manifolds in strictly pseudoconvex boundaries
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 197
EP - 206
LA - eng
KW - maximum modulus manifold; Levi form
UR - http://eudml.org/doc/262573
ER -

References

top
  1. [BI] L. Boutet de Monvel et A. Iordan, Sur les feuilletages ℂ-tangents des sous-variétés du bord d'une variété complexe, Astérisque 217 (1993), 39-52. 
  2. [BS] D. Burns and E. L. Stout, Extending functions from submanifolds of the boundary, Duke Math. J. 43 (1976), 391-404. Zbl0328.32013
  3. [CC1] J. Chaumat et A. M. Chollet, Ensembles pics pour A ( D ) , Ann. Inst. Fourier 29 (3) (1979), 171-200. 
  4. [CC2] J. Chaumat et A. M. Chollet, Caractérisation et propriétés des ensembles localement pics de A ( D ) , Duke Math. J. 47 (1980), 763-787. Zbl0454.32013
  5. [DS] Th. Duchamp and E. L. Stout, Maximum modulus sets, Ann. Inst. Fourier 31 (3) (1981), 37-69. Zbl0439.32007
  6. [FH] J. E. Fornaess and B. S. Henriksen, Characterisation of global peak sets for A ( D ) , Math. Ann. 259 (1982), 125-130. Zbl0489.32010
  7. [HS] M. Hakim et N. Sibony, Ensembles pics dans des domaines strictement pseudoconvexes, Duke Math. J. 45 (1978), 601-617. Zbl0402.32008
  8. [HW] F. R. Harvey and R. O. Wells Jr., Zero-sets of non-negative stricly plurisubharmonic functions, Math. Ann. 201 (1973), 165-170. Zbl0253.32009
  9. [HT] G. M. Henkin and A. E. Tumanov, Interpolation submanifolds of pseudoconvex manifolds, in: Proc. Seventh Winter School, Drogobych 1974, Theory of functions and functional analysis, Central. Ekonom.-Mat. Inst. Akad. Nauk SSSR, Moscow, 74-86 (1976); English transl. in Amer. Math. Soc. Transl. 115 (2) (1980), 59-69. 
  10. [I1] A. Iordan, A characterisation of totally real generic submanifolds of strictly pseudoconvex boundaries admitting a local foliation by interpolation submanifolds, Math. Ann. 288 (1990), 505-510. Zbl0716.32013
  11. [I2] A. Iordan, Maximum modulus sets in pseudoconvex boundaries, J. Geometric Anal. 2 (4) (1992), 327-349. Zbl0772.32012
  12. [NR] A. Nagel and J. P. Rosay, Maximum modulus sets and reflection sets, Ann. Inst. Fourier 41 (2) (1991), 431-466. Zbl0725.32007
  13. [R] J. P. Rosay, A propos de wedges et d'edges et de prolongements holomorphes, Trans. Amer. Math. Soc. 297 (1986), 63-72. Zbl0629.32009
  14. [WEB] S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26-28. Zbl0626.32019
  15. [WEI] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, R.I., 1977. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.