Maximum modulus sets and reflection sets
Alexander Nagel; Jean-Pierre Rosay
Annales de l'institut Fourier (1991)
- Volume: 41, Issue: 2, page 431-466
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNagel, Alexander, and Rosay, Jean-Pierre. "Maximum modulus sets and reflection sets." Annales de l'institut Fourier 41.2 (1991): 431-466. <http://eudml.org/doc/74924>.
@article{Nagel1991,
abstract = {We study sets in the boundary of a domain in $C^ n$, on which a holomorphic function has maximum modulus. In particular we show that in a real analytic strictly pseudoconvex boundary, maximum modulus sets of maximum dimension are real analytic. Maximum modulus sets are related to reflection sets, which are sets along which appropriate collections of holomorphic and antiholomorphic functions agree.},
author = {Nagel, Alexander, Rosay, Jean-Pierre},
journal = {Annales de l'institut Fourier},
keywords = {maximum modulus sets},
language = {eng},
number = {2},
pages = {431-466},
publisher = {Association des Annales de l'Institut Fourier},
title = {Maximum modulus sets and reflection sets},
url = {http://eudml.org/doc/74924},
volume = {41},
year = {1991},
}
TY - JOUR
AU - Nagel, Alexander
AU - Rosay, Jean-Pierre
TI - Maximum modulus sets and reflection sets
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 2
SP - 431
EP - 466
AB - We study sets in the boundary of a domain in $C^ n$, on which a holomorphic function has maximum modulus. In particular we show that in a real analytic strictly pseudoconvex boundary, maximum modulus sets of maximum dimension are real analytic. Maximum modulus sets are related to reflection sets, which are sets along which appropriate collections of holomorphic and antiholomorphic functions agree.
LA - eng
KW - maximum modulus sets
UR - http://eudml.org/doc/74924
ER -
References
top- [1] R. ARAPETJAN, G. HENKIN, Analytic continuation of CR functions through the "edge of the wedge", Soviet Math. Dokl., 24 (1981), 128-132. Zbl0521.32016
- [2] M. S. BAOUENDI, C. H. CHANG, F. TREVES, Microlocal hypoanalyticity and extension of CR functions, J. Diff. Geom., 18 (1983), 331-391. Zbl0575.32019MR85h:32030
- [3] D. BARRETT, Global convexity properties of some families of three dimensional compact Levi-flat hypersurfaces, preprint. Zbl0761.32010
- [4] E. BEDFORD, P. de BARTOLEOMEIS, Levi flat hypersurfaces which are not holomorphically flat, Proc. A.M.S., (1981), 575-578. Zbl0459.32007MR82a:32025
- [5] B. BERNDTSSON, J. BRUNA, Traces of pluriharmonic functions on curves, to appear in Arkiv För Mat. Zbl0727.31005
- [6] J. BRUNA, J. ORTEGA, Interpolation by holomorphic functions smooth up to the boundary in the unit ball in Cn, Math. Ann., 274 (1986), 527-575. Zbl0585.32018MR88c:32028
- [7] J. CHAUMAT, A. M. CHOLLET, Ensemble pics pour A∞(D), Ann. Inst. Fourier, 29-3 (1979), 171-200. Zbl0398.32004MR81c:32036
- [8] B. COUPET, Régularité de fonctions holomorphes sur des wedges, Can. Math. J., XL (1988), 532-545. Zbl0687.32009MR89m:32011
- [9] B. COUPET, Constructions de disques analytiques et régularité de fonctions holomorphes au bord, preprint.
- [10] T. DUCHAMP, E. L. STOUT, Maximum modulus sets, Ann. Inst. Fourier, 31-3 (1981), 37-69. Zbl0439.32007MR83d:32019
- [11] M. HAKIM, N. SIBONY, Ensemble pics dans des domaines strictement pseudoconvexes, Duke Math. J., 45 (1978), 601-617. Zbl0402.32008MR80c:32007
- [12] A. IORDAN, Maximum modulus sets in pseudo convex boundaries, preprint. Zbl0772.32012
- [13] A. IORDAN, A characterization of totally real generic submanifolds of strictly pseudo convex boundaries in Cn admitting a local foliation by interpolation submanifolds, preprint. Zbl0716.32013
- [14] S. PINčUK, A boundary uniqueness theorem for holomorphic functions of several complex variables, Math. Notes, 15 (1974), 116-120. Zbl0292.32002MR50 #2558
- [15] S. PINčUK, S. KHASANOV, Asymptotically holomorphic functions and applications, Mat. Sb., 134 (1987), 546-555. Zbl0639.32005
- [16] J.-P. ROSAY, A propos de wedges et d'edges et de prolongements holomorphes, TAMS, 297 (1986), 63-72. Zbl0629.32009MR87j:32018
- [17] J.-P. ROSAY, E. L. STOUT, On pluriharmonic interpolation, Math. Scand., 63 (1988), 168-281. Zbl0648.32009MR90k:32055
- [18] W. RUDIN, Function theory in the unit ball of Cn, Grund. Math. Wis., 241, Springer-Verlag, 1980. Zbl0495.32001MR82i:32002
- [19] N. SIBONY, Valeurs au bord holomorphes et ensembles polynomialement convexes, Séminaire P. Lelong, 1975-1976, Springer L. N. in Math., 578 (1977). Zbl0382.32004
- [20] S. WEBSTER, On the reflection principle in several complex variables, Proc. A.M.S., 71 (1978), 26-28. Zbl0626.32019MR57 #16681
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.