Maximum modulus sets and reflection sets

Alexander Nagel; Jean-Pierre Rosay

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 2, page 431-466
  • ISSN: 0373-0956

Abstract

top
We study sets in the boundary of a domain in C n , on which a holomorphic function has maximum modulus. In particular we show that in a real analytic strictly pseudoconvex boundary, maximum modulus sets of maximum dimension are real analytic. Maximum modulus sets are related to reflection sets, which are sets along which appropriate collections of holomorphic and antiholomorphic functions agree.

How to cite

top

Nagel, Alexander, and Rosay, Jean-Pierre. "Maximum modulus sets and reflection sets." Annales de l'institut Fourier 41.2 (1991): 431-466. <http://eudml.org/doc/74924>.

@article{Nagel1991,
abstract = {We study sets in the boundary of a domain in $C^ n$, on which a holomorphic function has maximum modulus. In particular we show that in a real analytic strictly pseudoconvex boundary, maximum modulus sets of maximum dimension are real analytic. Maximum modulus sets are related to reflection sets, which are sets along which appropriate collections of holomorphic and antiholomorphic functions agree.},
author = {Nagel, Alexander, Rosay, Jean-Pierre},
journal = {Annales de l'institut Fourier},
keywords = {maximum modulus sets},
language = {eng},
number = {2},
pages = {431-466},
publisher = {Association des Annales de l'Institut Fourier},
title = {Maximum modulus sets and reflection sets},
url = {http://eudml.org/doc/74924},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Nagel, Alexander
AU - Rosay, Jean-Pierre
TI - Maximum modulus sets and reflection sets
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 2
SP - 431
EP - 466
AB - We study sets in the boundary of a domain in $C^ n$, on which a holomorphic function has maximum modulus. In particular we show that in a real analytic strictly pseudoconvex boundary, maximum modulus sets of maximum dimension are real analytic. Maximum modulus sets are related to reflection sets, which are sets along which appropriate collections of holomorphic and antiholomorphic functions agree.
LA - eng
KW - maximum modulus sets
UR - http://eudml.org/doc/74924
ER -

References

top
  1. [1] R. ARAPETJAN, G. HENKIN, Analytic continuation of CR functions through the "edge of the wedge", Soviet Math. Dokl., 24 (1981), 128-132. Zbl0521.32016
  2. [2] M. S. BAOUENDI, C. H. CHANG, F. TREVES, Microlocal hypoanalyticity and extension of CR functions, J. Diff. Geom., 18 (1983), 331-391. Zbl0575.32019MR85h:32030
  3. [3] D. BARRETT, Global convexity properties of some families of three dimensional compact Levi-flat hypersurfaces, preprint. Zbl0761.32010
  4. [4] E. BEDFORD, P. de BARTOLEOMEIS, Levi flat hypersurfaces which are not holomorphically flat, Proc. A.M.S., (1981), 575-578. Zbl0459.32007MR82a:32025
  5. [5] B. BERNDTSSON, J. BRUNA, Traces of pluriharmonic functions on curves, to appear in Arkiv För Mat. Zbl0727.31005
  6. [6] J. BRUNA, J. ORTEGA, Interpolation by holomorphic functions smooth up to the boundary in the unit ball in Cn, Math. Ann., 274 (1986), 527-575. Zbl0585.32018MR88c:32028
  7. [7] J. CHAUMAT, A. M. CHOLLET, Ensemble pics pour A∞(D), Ann. Inst. Fourier, 29-3 (1979), 171-200. Zbl0398.32004MR81c:32036
  8. [8] B. COUPET, Régularité de fonctions holomorphes sur des wedges, Can. Math. J., XL (1988), 532-545. Zbl0687.32009MR89m:32011
  9. [9] B. COUPET, Constructions de disques analytiques et régularité de fonctions holomorphes au bord, preprint. 
  10. [10] T. DUCHAMP, E. L. STOUT, Maximum modulus sets, Ann. Inst. Fourier, 31-3 (1981), 37-69. Zbl0439.32007MR83d:32019
  11. [11] M. HAKIM, N. SIBONY, Ensemble pics dans des domaines strictement pseudoconvexes, Duke Math. J., 45 (1978), 601-617. Zbl0402.32008MR80c:32007
  12. [12] A. IORDAN, Maximum modulus sets in pseudo convex boundaries, preprint. Zbl0772.32012
  13. [13] A. IORDAN, A characterization of totally real generic submanifolds of strictly pseudo convex boundaries in Cn admitting a local foliation by interpolation submanifolds, preprint. Zbl0716.32013
  14. [14] S. PINčUK, A boundary uniqueness theorem for holomorphic functions of several complex variables, Math. Notes, 15 (1974), 116-120. Zbl0292.32002MR50 #2558
  15. [15] S. PINčUK, S. KHASANOV, Asymptotically holomorphic functions and applications, Mat. Sb., 134 (1987), 546-555. Zbl0639.32005
  16. [16] J.-P. ROSAY, A propos de wedges et d'edges et de prolongements holomorphes, TAMS, 297 (1986), 63-72. Zbl0629.32009MR87j:32018
  17. [17] J.-P. ROSAY, E. L. STOUT, On pluriharmonic interpolation, Math. Scand., 63 (1988), 168-281. Zbl0648.32009MR90k:32055
  18. [18] W. RUDIN, Function theory in the unit ball of Cn, Grund. Math. Wis., 241, Springer-Verlag, 1980. Zbl0495.32001MR82i:32002
  19. [19] N. SIBONY, Valeurs au bord holomorphes et ensembles polynomialement convexes, Séminaire P. Lelong, 1975-1976, Springer L. N. in Math., 578 (1977). Zbl0382.32004
  20. [20] S. WEBSTER, On the reflection principle in several complex variables, Proc. A.M.S., 71 (1978), 26-28. Zbl0626.32019MR57 #16681

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.